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X. On the Theory of Visco-Elasticity: a Thermodynamical Treatment of
Visco-Elasticity, and Some Problems of the Vibrations of Visco-elustic
Solids.

By J. H. C. TroMPSON, Senior Student of the Unwversity of Oxford.

(Communicated by E. A. MILNE, F.R.S.)

(Received August 17, 1932—Read November 10, 1932.)

The problem of the damping of vibrations in a solid which is imperfectly elastic was
introduced to me by Professor E. A. MiLve. Sir CHARLES SHERRINGTON had asked
Professor MILNE for his assistance in the analysis of an experiment which Dr. J. C.
EccLes was performing at the Oxford Physiological Laboratories, on the damping of
forced longitudinal vibrations in a muscle. It was proposed, in the first place, to assume
that in this experiment muscle displays dynamical properties of the same character as
a non-living solid—a similarity between the dynamical behaviour of muscle and that
of rubber and glass had already been noticed. According to this view the damping of
vibrations in the muscle would be due to the ‘‘imperfectness of elasticity ” of the
muscle ; and in order to work out the analysis of the experiment, it is necessary to
know the expression for the tension at any point of the muscle at any instant during
its strasming. An examination of the scientific literature dealing with the imperfectness
of elasticity of solids did not indicate an immediate solution of the problem.

The present paper contains a theoretical investigation of the dynamical behaviour
of imperfectly elastic solids, which I have attempted at Professor MILNE’s suggestion.
Dr. EccLEs has performed the experiments which originally suggested this investigation,
using rubber instead of muscle. The results of these experiments, together with the
analysis of the experiment, are contained in a separate and joint paper.

I wish to acknowledge my deep indebtedness to Professor MiLNE for his continual
help and criticism, and for many valuable suggestions. My thanks are also due to
Professor Love who drew my attention to certain points needing modification in the
dissertation, of which the subject-matter of this paper originally formed part.

In the entroduction a brief account is given of work on imperfectness of elasticity
since 1834, and this work is discussed with a view to the development of a general
theory of the dynamical behaviour of imperfectly elastic solids. §1 contains a
thermodynamical development of a general theory of imperfect elasticity, of the type
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340 J. H. C. THOMPSON ON THE THEORY OF VISCO-ELASTICITY.

which we call “ visco-elasticity.” In §2 are some general theorems on the damped
vibrations of visco-elastic solids. The general results of § 2 are illustrated in § 3 by
some particular examples; and some illustrative examples of forced motion are also
analysed. The examples chosen concern the vibrations of thin cylinders, which is a
subject of practical importance, as a wire or thin cylinder is usually found to be the
most convenient form of a solid for experimental investigation in this field.

Introduction.

Since 1834, when VicaT* made some observations on the extension of a loaded wire,
it has been realised that the mathematical theory of elasticity, founded on the basis of
the generalised HookE’s law, is incapable of predicting completely the elastic behaviour
of solids. The observed deviations from the behaviour predicted by HookE's law
have formed a subject of frequent investigation, and are of importance in such widely
scattered fields as the theory of tides and the engineering problem of the bending of
rotating shafts. Existing investigations provide either a phenomenological treatment
or a structure-theory treatment.

Recently PRANDTL{ has initiated a theory of elastic afterworking and hysteresis in
crystals, attacking the problem from the side of molecular statistics. But such
a development is of far greater complexity and difficulty in the case of the so-called
isotropic solids (in which these phenomena are most pronounced) on account of their
complex and haphazard structure. We here confine our attention to those investiga-
tions depending on a phenomenological treatment. Some of the older structure
theories properly fall into this class. The contemporary knowledge of atomic physics
was inadequate to supply the details of the molecular structure; and the work of
MEYER] and of BriLLouin,§ for example, seems to be an induction of the
molecular structure from the elastic properties of solids, rather than a deduction of the
elastic properties of solids from a hypothetical molecular structure, even though the
‘work appeared in the latter form.

.- The importance of Vicat’s paper is that it suggests the idea of elastic limits. He
found that-a wire, held stretched under a tension equal to one quarter of the breaking
stress, remained of constant length throughout the time of his experiments (nearly
three years), though similar wires showed a gradual increase of length when under
a tension equal to one-third of the breaking stress—2-75 cm. per metre in 33 months.
The so-called ““ limit of perfect elasticity > is determined by the greatest limiting strain
such that the solid acquires no residual permanent deformation (set) through being
strained, provided that the strain at every point of the solid never exceeds the limiting

* VicAT. “ Annales des ponts et chaussées,” 1834, 1¢* semestre, p. 40.

t L. PranDTL. Z. angew. Math. Mech.,’ Vol. 8, p. 85 (1928).

I “Crelle’s J.,” vol. 78, p. 130 (1874); vol. 80, p. 315 (1875).

§ ¢ Ann. Chim, (Phys.),” vol. 13, p. 8377 ; vol. 14, p. 311 ; vol. 15, p. 447 (1898).
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strain. When a solid is strained beyond the “ limit of perfect elasticity,” it is said to
be plastic. In this state it is found that the strain gradually increases under a fixed
stress, and that a permanent set remains after release from a state of stress. _

Now the essential feature of the classical theory of elasticity is that the elastic solid
described by the theory is a conservative mechanical system. It follows that the
stress components in such a solid are determined by the instantaneous values of the
generalized co-ordinates which define the instantaneous strained configuration, e.g.; in
the case of isothermal straining, by the strain components alone. We here define the
ideal solid characterised by this property as “‘ perfectly elastic.” The definition of the
so-called “‘ limit of perfect elasticity ”’ implies that, for equilibrium—and for equilebrium
only—the stress components are determined by the instantaneous strained configuration.
In our terminology this limit is thus more accurately described as the ““ limit of perfect
statical elasticity,” and a solid may display a dynamical imperfectness of elastlclty When
strained within this limit.

The experimentally determined value of the limit of perfect (statical) elastlclty
depends on the degree of experimental error in its determination. In order to define
the limit precisely it is now defined as the greatest limiting strain such that the residual
strain (or set) does not exceed a very small but measurable proportion (003 per cent.)
of the limiting strain.* Without this convention, it is clear that the value of the limit
would be reduced by increased experimental accuracy, and it is a matter of fundamental
importance whether the true limit has a zero or non-zero value, as determined in the
ideal case of perfect experimental accuracy.

We confine our attention to the behaviour of solids within the practically defined
and experimentally determined limit of perfect (statical) elasticity. It is necessary to
consider two possibilities. The true limit may have a zero value, in which case there
is a true statical imperfectness of elasticity (the effects of plasticity are never absent),
and the classical theory of elasticity needs modification even for the case of a strained
solid in equilibrium. If the true limit has a non-zero value, then within this limit
there is only a dynamical imperfectness of elasticity, and the classical theory of elasticity
describes accurately the behaviour of a strained solid in equilibrium, but may need
modification to describe accurately the dynamical behaviour of a straining solid. But,
irrespective of whether the true limit has a zero or non-zero value, there would still
appear to be a difference between the behaviour of a solid within its practically deter-
mined limit of perfect (statical) elasticity and its behaviour outside this limit. For,
when a solid is strained only within this limit, any permanent set is too small to measure ;
but if the solid is strained beyond this limit, the magnitude of the permanent set is
limited only by the breaking point. Thus, while to assert that the discrepancy between
the observed dynamical behaviour of solids, within the practically defined limit of
perfect (statical) elasticity and the dynamical behaviour predicted by Hooke’s law,

* See, for example, the definition of the “ Sichtbare Elastizitétsgrenze” in Tr. v. KARMAN’S Physik-
alische Grundlagen der Festigkeitslehre,” ¢ Enc. Math. Wiss.,” 4.2.2.5., footnote 23 (y), p. 704.

22 2
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is not owing to the same molecular (or microscopic) physical cause as the well-known
plastic effects outside this limit would require that the true limit has a non-zero value, it
might still be expected that the behaviour of solids within this practically defined limit
could be capable of an approximate mathematical description, while their behaviour
beyond this limit would not be capable of the same mathematical description.

The two principal effects in the observed dynamical behaviour of elastic solids, which
are inconsistent with the behaviour predicted by Hooxke’s law, are :—

(1) The damping of vibrations in solids.

(2) Hysteresis phenomena. (This term is taken to include all phenomena which
indicate a tendency on the part of the solid to delay in taking up the strain system which
the instantaneous stress system demands according to Hooke’s law. In this category
must be included some of the ““ Elastiche Nachwirkung ” or elastic afterworking effects,
though the term is sometimes used in such a wide sense in German literature as to
include the phenomenon of permanent deformation.)

The phenomenon of elastic afterworking appears to have been first noticed (in 1835)
by WEBER,* who found that when a silk fibre is stretched and then released, it does not
immediately return to its unstretched position, but is left with an extension which
decreases asymptotically to zero with the increase of time. R.KoHLRAUSCHT performed
similar experiments, but it was the work of F. Konrravuscr] which was the first of
a series of more exact investigations to determine empirical laws concerning the
phenomena first noticed by Vicar and WEBER. F. KonLrAUscH performed three
series of experiments on twisted glass wires.  The results of the second series showed
that the  torsional afterworking >’ of the wire after release from a state of torsion could
be expressed by a formula z = ¢/i*, where « is a constant known as the ““ coefficient of
elastic afterworking,” and the time ¢ is measured from the instant of release. The
constant ¢ depends on the magnitude and duration of the twist preceding release.
This result does not appear to be consistent with the result of the third series of experi-
ments according to which the couple necessary to keep the wire in an untwisted state
after release from a state of torsion is of the form d = d, + ce~*. The term d,
indicates a permanent set. Again the formula z == ¢/t* for the afterworking leads to
the obviously absurd result that z -~ o when ¢-0. NEESEN’S§ expression of the
afterworking by a formula & = ce™® + ¢;¢™# seems preferable. This more complicated
formula was criticised by F. KorLrAUSCH|| on the grounds that it fitted the results no
better than his own simpler formula x = ¢/#*, but this can only be the case if ¢ is not
measured small enough to expose the inadequacy of the simpler formula.

The field of investigation of imperfect elasticity was widened, when in 1865 Lord

* “ Pogg. Ann.,” vol. 34, p. 247 (1835) ; vol. 54, p. 1 (1841).

1 “Pogg. Ann.,’ vol. 72, p. 393 (1847).

1 ¢ Pogg. Ann.,” vol. 119, p. 337 (1863) ; vol. 128, pp. 1, 207 and 399 (1866) ; vol. 158, p. 337 (1876).
§  Pogg. Ann.,’ vol. 153, p. 498 (1874).

|| ¢ Pogg. Ann.,’ vol. 155, p. 579 (1875).
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KeLvin* published a paper containing an investigation of the damping of the vibrations
of torsional pendulums.  As a result of certain arguments and preliminary experiments,
he came to the conclusion that the damping of vibrations was due almost entirely to
dissipation of energy in the wire itself, and that dissipation of energy owing to air
resistance, thermo-elastic causes, and lack of rigidity at the point of fixation could only
aecount for a very small proportion of the observed damping. He examined the
experimental results in the light of a hypothesis which he suggested. This was, that
when a solid is straining viscous forces are called into play, which are strictly analogous
to the viscous stresses in a liquid. - This idea of the extension of the theory of viscosity
from the liquid state to the solid state had already been suggested, rather indirectly,
in 1845 by STokEs,t who remarked that ““ there appears to be no line of demarcation
between a solid and a viscous fluid.” KEeLviN defined solid viscosity as molecular
friction, and pointed out that the word viscous had sometimes been used to describe
properties which might more accurately have been termed plastic. This wide use of
the term viscous has unfortunately continued,} but some restriction as to its use is
necessary to avoid confusion. It is convenient here to restrict the use of the word
“ viscous ” to solids in which there is an additional stress owing to molar motion, of
the same form as for a fluid. As a result of his experiments, KeLvin found that :—

(1) In any series of experiments, with the same torsional pendulum, for small
amplitudes of vibration, the logarithmic decrement of the amplitude per vibration was
constant.

" (2) In similar experiments, but with different vibrators, the logarithmic decrement
was not quite that expected according to SToKES’S viscosity law, which predicts that
the logarithmic decrement per vibration would be inversely proportional to the period
of vibration. The logarithmic decrement was found to be greater for the longer periods
than according to this law.

KeLvIN also found certain fatigue effects in wires that were kept vibrating con-
tinuously, but some doubt was thrown on the value of his experimental results by
THOMPSON.§ Maintaining the vibrations by an electrical device when investigating
fatigue effects, he found that neither the logarithmic decrement nor period of vibration
depended on the previous elastic history of the wire; and suggested that the wires
must have been excessively twisted in KELVIN’S experiments—a reasonable suggestion
in view of the fact that some of KELVIN’S experiments were performed by students.

On the assumption that the action between two particles is only transmitted at a

* Sir W. THOMSON, * Proe. Roy. Soc.,” vol. 14, p. 289 (1865) ; reprinted in his collected works, ““ Math. and
Phys. Papers,” vol. 3, p. 27 (Cambridge 1890).

+ ¢ Trans. Camb. Phil. Soc.,” vol. 8, p. 287 (1845). Reprinted in his  Scientific Papers,” vol. 1, p. 75.

1 For example, the use of the word ‘ elastico-viscous ” by J. G. BurcHER (‘ Proc. Math. Soc. Lond.,’
vol. 18, p. 103 (1877)) and others; cf. also “ Viscous Flow of Metals,” ANDRADE, ‘ Proc. Roy. Soc.,” A
vol. 84, p. 1 (1910). A

§ “ Phys. Rev.,” vol. 8; p. 141 (1899).

td
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finite rate, MEYER (loc. cit.) worked out the resulting expressions for the stress com-
ponents in a solid, using the original Cauchy structure as a basis of his calculations ;
and found that the stress components were expressed linearly in terms of the strain
components and rate of strain components. MEYER* later attempted to explain the
phenomenon of elastic afterworking according to this set of stress-strain relations.

BortzMANNT criticised MEYER’S explanation of elastic afterworking, and suggested
a modification of the generalised Hookg’s law by which he attempted to explain both
the damping vibrations in solids and the elastic afterworking phenomenon. Borrz-
MANN’S modifications involve an extension of the “ relaxation hypothesis,”” due to
MaxweLL,{ and which appeared in the latter’s paper “ On the Dynamical Theory of
Gases.” MAXWELL’S suggestion was that, while the HookE’s law stress-strain relation
in its simplest form is F = ES (F is the stress, S the strain, and E an elastic modulus),
the actual behaviour of a solid is more closely predicted by the relation

dF as F

—_— = Y =

dt d T

where T is constant for any particular solid, and of the dimensions of a time. Thus,
under a given stress the strain increases indefinitely ; and the stress required to maintain
a given strain decreases exponentially to zero. The relaxation hypothesis is clearly
an attempt to ascribe all imperfectness of elasticity as due to the effect of plasticity,
and requires that the true limit of perfect (statical) elasticity should have a zero value.
The hypothesis cannot be dismissed on these grounds, but the results that solids flow
indefinitely under a given stress and that a 100 per cent. permanent set is possible
would seem to make the hypothesis inapplicable to metals and all materials used in
building. It is difficult to believe that the hypothesis is applicable even to glass in its
durovitreous state, since a small flow under its own weight (as the hypothesis requires)
would be immediately discernible in optical instruments, while, on the other hand, the
elastic afterworking effects in glass are most pronounced.

Like MAXwELL, BoLtzMANN modified the HOOKE’s law stress-strain relation by the
introduction of * relaxation terms,” but he used a different expression for these terms.
The couple L, to be applied to the free end of a wire to twist that end through an

angle 0, is given by
' L=K6®o

according to Hookr’s law (where K is a constant). According to BOLTZMANN’S
hypothesis, if the wire had been twisted through an angle 6 (<) at time = for a period of
time dr, there is a relaxation so that the couple L(t), required to maintain a twist
0(¢) at time ¢, is

L$)=K6(@)— ¢ ({t— )0(r)dn,

* ¢ Pogg. Ann.,” vol. 151, p. 108 (1874).
t ¢ Pogg. Ann. Ergidnzungsbd.,” vol. 7, p. 624 (1876).
1 ¢ Phil. Trans.,” vol. 157, p. 49 (1867). Reprinted in his ¢ Scientific Papers,” vol. 2, p. 26.
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where ¢ (¢ — <) is an undetermined function of the interval of time (t — z). He
further assumed that these relaxation effects are superposed, and putting ¢ — = = o,
arrived at the following modified form of the stress-strain relations in an isotropic
solid :—

C pe® =200 + 200, () — | 40 [4 () & (— ) +2¢ (o) €, (1— )], ete.;
P =206.0)—2( do ¥ (@) . (¢ — w) eto.

The value of the stress components thus depends only on the iﬁstantaheous-strain and
the past strain history. The two functions ¢(w) and ¢(w) are as yet undetermined.
BoLTzMANN first attempted to determine the function ¢(«) by experiments on torsional
afterworking. His experiments suggested a form A/ for ¢ (v); and he took ¢ ()
= f(w)/®, where f () is constant for moderate », but has to be modified for small and

large values of  in order to ensure the convergence of the integral wnp (('o)d,m. The
8 8 & 0

value of f () for large values of w was determined by the assumption p ='j‘:¢ (0).do.

This leads to the same result as MAXWELL’S relaxation hypothesis, namely, that the
couple necessary to maintain a fixed twist decreases exponentially to zero with the
increase of time, thus giving a 100 per cent. permanent set. And the assumption is

therefore in direct contradiction to the fact thatj $(0).do must not have a value

exceedlng 0: 03 per cent. of the value of 1, when the solid is stramed only within the
practically defined limit of perfect (statical) elasticity. From this determination of
¢ (@), and assuming ¢ (o) = ¢ (o), BoLrzmany calculated a value of the logarithmic
decrement of a torsional pendulum. The observed logarithmic decrement was about
50 per cent. greater than the calculated, a difference too large to be explained by air
resistance ; and the calculated value would already appear to be too large on account

of the assumption p ==[ ¢ (0)do. BorLTzMANN’S theory predicted that the
o :

logarithmic decrement of the amplitude of vibration of a torsional pendulum would
be constant and independent of the period of vibration, a result which does not appear
to be true.t The fact that the principle of superposition is not verified by experiments
on elastic afterworking} is also a serious criticism of the theory. The differential
equations of motion of the theory of elasticity become integro-differential equations
with BoLTzMANN’S modifications of Hook®’s law, and VoLTErRA§ has developed the
resulting mathematical theory in several papers.

* This notation for stress and strain is defined in § 3-1.

+ Kuemencic, ¢ Wien Ber., vol. 81 (2), p. 791 (1880).
" HorkinsoN, ‘ Proc. Roy. Soc.,” vol. 28, p. 148 (1878).

§ VoLTERRA, “ Legons sur les équations intégrales et les équations intégro-differentielles,” Paris, 1913.
For references to individual papers, see Love’s ¢ Elasticity,” p. 121 (4th Edition, Camb., 1927).
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MaxweLL’s relaxation . hypothesis was derived (in a more general form) from a
structure theory by BurcaEr.* The details of the suggested structure were due
to MAxweLL. It was assumed that molecules in a solid group together in two ways;
the groups of the first type being stable until a certain limiting strain is applied, while
groups of the second type are continually splitting up. A viscous fluid is composed
of molecular groups of the second type only, and a solid composed of molecular groups
of both types was called “ elastico-viscous.” It is clear from the assumed molecular
structure as well as from the resulting stress-strain relations that an elastico-viscous
solid is only a particular type of a plastic solid. The attempt to explain all imperfectness
of elasticity of solids as due to plasticity of the elastico-viscous type is open to the same
criticisms as was the more elementary relaxation hypothesis due to MaAXWwELL.
The same remarks apply to BRiLLouin’st  Theory of the Double Medium,” which is
the molar analogue of the elastico-viscous structure theory.

In 1892, Voier} published a long paper on the ““ Innere Reibung ” of metals. He
supposed that the stress components in a strained and straining solid could be expressed
as the sum of two sets of terms, the first set being the ordinary Hooke’s law elastic stress,
the second set representing a generalised viscous stress. Thus the stress components
are expressed as the sum of terms linear in the strain components and the rate of strain

components, according to§
0

Pes = caﬁmnemn'*_ Fopn 55 €
We call these relations the  wisco-elastic” stress-strain relations.| VoigT said that
there were 36 distinct *“ viscous coefficients,” @, though we shall see (§1-6) that an
additional symmetry relation reduces this number to 21 in the general case of an
®olotropic solid. In the case of an isotropic visco-elastic solid, the stress-strain relations
reduce to :—

P = 1A+ 26, + 3 204 20 % ot

P,. = 2pe,, + 20/ 3_862,_2 , ete.

VoigT analysed the problem of the bending and torsional vibrations of thin isotropic
visco-elastic rods, fixed at one end and having an inertial disc attached at the * free
end.” The analysis was based on the assumption that the “ viscous terms” in the

* ¢ Proc. Math. Soc. Lond.,” vol. 8, p. 103 (1877).

+ ¢ Ann. Chim. (Phys.),” vol. 13, p. 377 ; vol. 14, p. 311 ; vol. 15, p. 447 (1898).

1 ¢ Ann. Phys.,” vol. 47, p. 671 (1892).

§ This tensor notation is defined in §1-1 and §1-2. A _ ‘

| Terminology is at present confused. Sezawa and HosaLr have used ‘‘ visco-elastic ” in this sense,
but JEFPREYS uses the word * firmo-viscous.” The term  visco-elastic ” seems to describe the relations
as accurately and as fully as possible. Care must be taken to avoid confusion with the rather unfortunate
term ** elastico-viscous,” which has an entirely different meaning. '
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¢

expression for the stress components are small compared with the  elastic terms.”
It was shown that the logarithmic decrement of the amplitude per vibration should be
inversely proportional to the period of vibration (for either bending or torsional vibra-
tions), in contrast to the constancy of the logarithmic decrement which BorTzMANK’S
hypothesis predicted. This provided an interesting criterion by which to test the
applicability of the two theories. After making corrections for air resistance, Voict
came to the conclusion that the damping of both bending and torsional vibrations could
be explained on the visco-elastic hypothesis for copper and nickel, as could the damping
of the bending vibrations for brass and bronze. Cadmium appeared to behave
according to BorrzMANN’s hypothesis, while the results for the cast metals fit in with
neither. From the results of his experiments, VoiaT was able to calculate the values
of both A" and p’ the viscous coefficients corresponding to the Lamf elastic constants
A and w. For nickel he found that

AN =448 X 10° p' =12-5 X 10°%;
while, from his data, A and p can be roughly calculated as
A=8 X 10", u=26 X 10"
It is important to notice that neither of the relations
A =0 or N/h=pYu

is satisfied even approximately by these experimental results.* Both of these relations
have been assumed to be true by recent investigators.t

By comparison of an elastic medium with a monocyclic system, REISSNER} obtained
all the well-known results for an elastic solid in a very concise way. He proposed to
account for the imperfectness of elasticity of solids by the introduction of terms,
depending on the rate of strain, into the expression for the ““ energy ” of the solid.
Owing to the abstract nature of this modification, it is difficult to see whether or not
the resulting theory is likely to explain the observed dynamical behaviour of solids,
and what, if any, the limits of the applicability of the theory would be.

Since 1900, investigations of imperfectness of elasticity have usually dealt with
particular problems, often of industrial importance. Little new work of general
theoretical interest has been attempted, and the particular problems have generally

* The relation A’ 4- §u’ =0 means that there is no dilatational viscosity and would reduce the
additional viscous stress to exactly the same form as STOKES’s viscous stresses in a liquid. SToxEs arrived
at this result by a symmetry argument. There does not seem to be any reason for adopting this result
for a solid, unless some molecular cause for the viscous terms is pre-supposed.

1 See footnotes ** p. 348; §, ||, 9, ** p. 349.

1 ¢ Ann. Phys.,” vol. 9, p. 44 (1902).
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been examined in the light of Vora1’s visco-elastic hypothesis or MAXWELL’s relaxation
(elastico-viscous) hypothesis.

Two papers, published in 1921, contain accounts of detailed investigations of the
damping of vibrations of thin rods, the results being examined in the light of the visco-
elastic hypothesis. In the first, Hoxnpa and Konno* found that for the various metals
which they examined (1) the “ coefficient of normal viscosity 't is of the same order of
magnitude (10%) as the “ coefficient of tangential viscosity,”] (2) the coefficients of
viscosity of a metal having a low melting point are large.

The second paper, by IokIBE and SAKALS§ gives the results of an experimental investiga-
tion of the variation with temperature of the elastic and viscous coefficients, and contains
a full account of previous work on this subject. The experiments were made on the
damping of the vibrations of torsional pendulums. The slight discrepancies between
the observed damping and that predicted by the visco-elastic hypothesis were supposed
to be due to dissipation of energy at the point of fixation, and to the fact that the
amplitude of the twist was excessively great. The ““ real ” logarithmic decrement was
obtained by a method of interpolation. The tangential viscosity of a solid was found
to increase with increase of temperature, in general ; but in the case of iron (which
has a high melting point) it was found to decrease to a minimum before starting
to increase.

HerTwERr|| has calculated the coefficient of tangential viscosity from observations
on slow forced torsional vibrations of wires, and obtained values of the order of 105 for
various metals, in contrast to the values of the order of 10 obtained by investigators
from experiments on the damping of vibrations of torsional pendulums.

The analysis of the problem of the longitudinal vibrations of a thin rod has been
worked out by Capy ¥ and QuiMBy,** but both solutions are open to criticism. Capy
uses the equation of motion of sound waves in a viscous medium,f{ and assumes that it
is the equation of motion of the longitudinal vibrations of a visco-elastic rod, on account
of the well-known mathematical analogy between the two problems in the case of
perfect elasticity. QUIMBY assumes in his analysis that the ratio of the lateral to
longitudinal strain is — ¢ (PoIsson’s ratio). As we shall see in §3-4, this is false
unless there is a relation 2’/x = p'/up between the elastic and viscous coefficients ; and
QuimBY had already assumed that there is no dilatational viscosity, i.e. A"+ 3u’ = 0.
From observations of the damping of the vibrations (which were exceedingly rapid)

* ¢ Phil. Mag.,” vol. 42, p. 115 (1921).

+ The coefficient of normal viscosity is analogous to Youna’s modulus. Honpa and KoxnNo were here
using the results of Vorar’s approximations. This point is dealt with in § 3-4.

1 The coefficient of tangential viscosity is p’.

§ ¢ Phil. Mag.,” vol. 42, p. 397 (1921).

|| ¢ Wien Ber.,” vol. 134, p. 51 (1925).

¢ ¢ Phys. Rev.,” vol. 19, p. 1 (1919).

** ¢ Phys. Rev.,” vol. 25, p. 559 (1925).

11 See Ravreieu’s ““ Theory of Sound,” vol. 2, p. 283.
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and using this analysis, he obtained a value of the order of 10® for the tangential
coefficient of viscosity of glass and copper.

WARTENBERG* has observed that a metal wire composed of large crystals does not
exhibit observable elastic afterworking or hysteresis, as he also found to be the case
for any wire at the temperature of liquid air. OxuBot has worked out a theory of
elastic afterworking on the assumption that this phenomenon is due to slipping at
crystal interfaces, and for some simple experiments, the observed results agreed with
those predicted by his theory. This attempt to ascribe imperfectness of elasticity as
being caused by action at crystal interfaces is in agreement with the known fact that
individual crystals exhibit very little afterworking or damping of vibrations.

- One of the most interesting applications of the theory of imperfectness of elasticity
of solids is to geophysical problems. Sir G. H. DaArwIN] worked out the theory of
tides of an elastico-viscous spheroid in connection with his *“ Theory of Tidal Friction.”
Concerning this treatment of the earth as elastico-viscous he says that the elastico-
viscous stress-strain relation ““has not . . .. any experimental justification; its
adoption was rather due to mathematical necessities than any other reason.”

JEFFREYS§ has considered the possibility of the representation of the imperfect
elasticity of the earth by the elastico-viscous stress-strain relation (MAXWELL’S relaxa-
tion hypothesis) or by what he calls the * firmo-viscous ” law (which is VoicT’s visco-
elastic hypothesis with the assumption that there is no dilatational viscosity), or by
a combination of the two. In a recent paper JEFFREYS|| has applied the visco-elastic
hypothesis to the problem of the propagation of seismic waves; and from the time of
growth of distortional waves, he deduces a rough value of 0-004 seconds for the ratio
w'/u for the earth.

HosarLiq] and SEzawa** have also investigated the problem of the damping of waves
in a visco-elastic solid. HosaL1 used the method of solution by series, whereas JEFFREYS
used the operational calculus; both assumed that there was no dilatational viscosity.
Hosar1 solved the problem of the free vibrations of a visco-elastic sphere ; and showed
that the vibration can be represented by the superposition of vibrations, some of which
are exponentially damped harmonic oscillations and other exponentially damped
aperiodic motions. SEzawa’s paper, which is purely mathematical, is very compre-
hensive. It includes the solution of the problem of the propagation of dilational and
surface waves from a given initial disturbance, and thus deals with the difficulties
that arise from attempting to satisfy initial conditions for the first time. The method

* ¢ Verh. deuts. phys. Ges.,” p. 113 (1918).

T ¢ Sci. Rep. Tohoku Univ.,” vol. 11, p. 173 (1922).

1 ¢ Phil. Trans.,” vol. 170, p. 1 (1879).

§ ‘ Mon. Not. R. Astr. Soc.,” vol. 75, p. 648 (1915) ; vol. 77, p. 449 (1917) ; ¢f. also “ The Earth,” Camb.,
p. 263, 1929.

I < Geophys. Suppl. R. Astr. Soc.,” vol. 2, p. 318 (1931).

€ ‘ Proc. Roy. Soc.,” A, vol. 104, p. 271 (1923).

** ¢ Bull. Barthq. Res. Inst. Tokyo Univ.,” vol. 3, p. 43 (1927).
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used is the FoURIER integral method ; and it seems that the results are only valid for
certain types of initial disturbances, as otherwise the analysis deals with divergent
integrals. By taking only an approximate form of the general equations of wave
motion, errors are introduced which may be considerable for some types of initial dis-
turbance. The problem of the propagation of surface waves introduces the difficulty
of satisfying the surface (boundary) conditions, and in order to satisfy them, SEzawa
is forced to make the assumption that A’/x = p’/p. He showed that, however sharp
the initial form of disturbance may be, the pulses in a visco-elastic solid assume gradually
flat forms, their apparent wave-length being prolonged (as compared with the corre-
sponding pulses in a perfectly elastic solid). Srzawa also analysed the problem of the
propagation of waves in a beam fixed at one end. Though he does not give the
derivation of his equation of motion, it is clear that he has made some approximation
such as VoieT made, or else assumed that A'/x = u'/p as is implied by QuUiMBY’S
analysis of a similar problem.

Now, any molar (or large scale) theory of the properties of a strained and straining
solid can be nothing else but the ‘ thermodynamics of a continuous medium.” It must
be emphasized that the stress-strain relations are not the basis but the result of such
a theory. A stress-strain hypothesis, as it stands, can tell us very little about the
properties of the solid it claims to represent, and it is not necessarily consistent with
the first and second laws of thermodynamics or with the fact that the solid is to be
regarded as continuous. For instance, certain symmetry relations must hold between
the elastic coefficients (or constants) occurring in the expression of Hooke’s law ; and
we shall see in § 1-6 that equivalent symmetry relations must hold between the viscous
coefficients in Vorar’s visco-elastic stress-strain relations. Further, the mere state-
ment of a stress-strain hypothesis gives no suggestion as to the limits in which it is
valid, whereas a thermodynamical theory can sometimes supply information concerning
the character of the limits.

The value of experimental evidence in the development of a thermodynamical theory
of a continuous medium applicable to a strained and straining solid is twofold. In the
first place the character of the experimental evidence suggests the functional form for
the expression for the energy of the solid, and also for the rate of dissipation of energy
(if any—there is none according to the classical theory of elasticity). In the second
place, quantitative experimental results indicate the approximations that must be
made in reducing these unknown functions to tractable form. Thus the fact that an
elastic solid strained within the limit of perfect (statical) elasticity always returns to
the same equilibrium position when released from a strained position can be shown to
justify the expression of the  strain-energy ” in terms of the geometrical strain. The
quantitative relation expressed by Hook®’s law (even in its simplest form) suggests
that, in the expression for the strain-energy, powers of the strain components of order
higher than the second can be neglected.

In §1, a theory of the thermodynamics of a continuous medium is worked out in
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such a form as to describe the behaviour of a strained and straining solid within the
practically defined limit of perfect (statical) elasticity, and, in particular, the vibrations
of solids. We now examine the experimental data of the imperfectness of elasticity
to obtain the information which is needed in the construction of such a theory.

It seems certain that dissipation of energy occurs inside a solid when it is straining,
however small the value of the strain during the straining may be. No other explanation
of the damping of the vibrations of a torsional pendulum is tenable. With regard to
the quantitative expression of the rate of dissipation of energy, we remark that the
visco-elastic hypothesis, due to VoraT, has met with considerable success in explaining
the observed damping of vibrations in individual sets of experiments. The value of
the coefficient of tangential viscosity of metals obtained by HETTWER was of the order
of 10'5; the value obtained by Hoxpa and Konxo and other investigators of the
damped vibrations of torsional pendulums was of the order of 10%; and the value
obtained by QuiMBY was of the order of 103. It is significant that the decreasing order
of magnitude 105, 108, 10% corresponds to the increasing order of the speeds of vibration
in the respective sets of experiments; though the value obtained by QuiMBY may be
open to criticism, and lack of rigidity of fixation would have the greatest effect on
HeTTWER’S result. A possible inference is that the visco-elastic hypothesis may be
approximately accurate for a limited range of rate of change of strain, but is only an
approximate form of some more general law.

In view of these experimental results, it seems reasonable to suppose, firstly that the
rate of dissipation of energy depends on the rate of straining, and secondly that an
expression for the dissipation of energy which leads to the visco-elastic stress-strain
relations is approximately correct for some range of rate of straining.

Experimental evidence which is of use in the formulation of the expression for the
energy of a strained solid is much less precise. The important question as to whether
the true limit of perfect (statical) elasticity has a zero or non-zero value is still
unanswered. The most definite knowledge is drawn from the practical definition of
this limit. KEvidence drawn from experiments on elastic afterworking effects is indirect,
and its value is difficult to assess as excessive straining appears to have occurred in
some of the experiments.

§1.—A THERMODYNAMICAL DEVELOPMENT OF A THEORY OF VISCO-ELASTICITY.
1-1. Stress: notation.

A set of rectangular cartesian axes, fixed in space, are taken as axes of reference.
The origin is at O, and the directions of the axes are denoted by the numbers 1, 2, 3.

The «-component of internal force across a plane element of area dS is denoted by
Pve dS, where v indicates the direction of the normal to dS. p,, is taken as positive
when the internal stress is a tension, negative when it is a pressure. The components
Pus (2, B =1, 2, 3) are components of the stress tensor p.
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1-2.  Strawn and rotation : notation.

The geometrical configuration of a solid body is determined when the position in
space of the particles of which it is composed is known. The standard configuration is
taken to be one of equilibrium and uniform temperature 6,. In this standard con-
figuration the position of a typical particle P is determined by the vector OP, denoted by
X. Its components along the axes are x, (x =1, 2, 3). The vector OP at any instant
of time ¢ is denoted by x + u, and its components along the axes by z, + u, (« = 1, 2, 3).
The vector u is thus the displacement of P at time ¢.

The position of a neighbouring particle P’ relative to P is measured by the vector
dx in the standard configuration, and by the vector dx + du at time ¢. Thus du
measures the displacement of P’ relative to P at time ¢.

For the component du, we have

ou,
5%, dg.

du, =

(A repeated dummy suffix indicates summation over all possible values of that suffix.)
Thus

du, = esduy + o gdxg, . . . . . . . . .. (1-21)
where
’ :l<%+%> .......... (1-22)
“E\ow, 0w/’
and
1[0 é@_a)
P8 = *\ox, Oz
= B @y o e e e e e (1-23)

141

E,, is a component of the E-tensor, sometimes called the ‘ alternate tensor,”* and

w=3curlu. . . . ... ... ... (1-24)
Hence
dut, = e,5 dxy, — B, dig,
so that
du=¢e.dx —dX \ @

=e.dx+m ANdXx. . . ... ... . (1-25)

The tensor e is called the strain tensor, @ the rotation tensor, and @ the rotation vector.

From equation (1-25) we see that the relative displacement of two particles P and
P’ at time ¢, as compared with the standard configuration, is the sum of two terms,
e.dx and @ A dx. The second term represents a rotation @ of the line PP’. The first
term is easily seen to represent a change in length of PP’, the change of length varying

* A component Eg, is zero if any two suffixes are equal and equal to 4 1 if all three are different,
the upper or lower sign being taken according as the number of inversions in o, 8, v of the natural order,
1, 2, 3, is even or odd.
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with the direction of PP’, and expressible by means of the strain tensor e, which thus
completely determines the change of shape of the immediate surroundings of P.

1-3.  Application of the Principle of Virtual Work : the energy of a strained solid.

Now, it is well known that all the properties of the motion of a mechanical system can
be deduced from the application of the principle of virtual work. In this case a virtual
change of configuration of the system is considered subject to the law of conservation of
mechanical energy, which is the appropriate special form of the more general first law
of thermodynamics.

The theory of the change of configuration of a compressible solid is not simply
mechanical but thermodynamical, as a change of strain is, in general, accompanied
by a change of temperature. We proceed, therefore, to investigate the properties of
strained and straining solids by the complete application of the principle of virtual
work, v.e., the consideration of a virtual change of configuration of a solid subject to
the first two laws of thermodynamics.

We now consider a solid of any given shape and size, and suppose, for simplicity,
that there is no field of force (.e., there are no body forces or body moments on an
element of the solid due to the external field). As there is no field of force, we take the
standard configuration to be one of stable equilibrium and uniform temperature, and
further suppose that there is no internal stress and that no forces are applied to the
surface of the body.*

The energy of a solid is a concept which is a logical consequence of the first law of
thermodynamics. The excess of energy of a solid in any configuration over its energy
in the standard configuration is equal to the amount of energy (in the form of work
and heat, for example) which has to be supplied to the solid to bring it to the given
configuration from the standard configuration.

We now fix our attention on a small element (or particle) of our solid body surrounding
the point P, and of mass dm.f We denote the energy of the particle of mass dm at P

* Toriginally worked out the theory for the case of body forces (e.g., gravitational field) and body moments

(e.g., magnetised body in a magnetic field), in which it is also necessary to consider an initial stress. The
consequent complications are of no more particular interest in a theory of visco-elasticity than in the theory
of perfect elasticity ; and the equations of motion and expressions for the stress at the free surface of a.
solid, obtained in the case of no fieid of force, still hold—as approximations—in the case of a field of force
and initial stress.
% In Love’s ¢ Elasticity ” an element of certain volume in the standard configuration is considered for
purposes of energy definition. Though physically the same, slight mathematical differences result. The
fact that the surface integral on p. 93 is taken over the surface of the solid in the standard configuration
implies a definition of stress with reference to the standard configuration, which prevents the stress-
components from being components of a tensor. (Al references to Love’s *“ Elasticity ” refer to 4th ed.
(Cambridge, 1927).)
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by (E + L) dm, where Eydm is its energy in the standard configuration. Provided
that the dimensions of the element are large compared with molecular dimensions, we
can split the energy up into kinetic energy (of molar motion) and the remainder, which
we call the non-kinetic energy. Hence

(B + E,) dm = Tdm -+ (U + U,) dm,

where T denotes the kinetic energy per unit mass and U + U, the non-kinetic energy
per unit mass in the configuration at time ¢. There is no kinetic energy in the standard
configuration, by definition; and U, is the non-kinetic energy per unit mass in the
standard configuration. The non-kinetic energy (U -+ U,) dm is independent of the
motion of the solid.

The kinetic energy per unit mass, T, is given by the formula

0w, \2
T=1 X < “> S e e e e e e e e e 1-31
2u=1,2,3 ot ( )

where du,/0t is the a-component of velocity of the element P.

Now, if the solid always returns to the standard configuration when released from
a state of strain (it is supposed that a flow of heat is arranged to bring the solid to a
uniform temperature 6,), the physical properties of the element at P appear to be com-
pletely determined by the shape and temperature of the element. For there is no
method of distinguishing between two configurations in which the shape and temperature
of the typical element at P are identical. - The shape of the element is completely
determined by the strain tensor e, which is, in turn, determined by its nine components
€. (o, B =1, 2, 3), only six of which are distinct on account of the relations e,, = ¢,

We suppose that no permanent set is possible, so that

U=U(5,e. ...... C L. (1-82)

‘Unless the solid is uniform the expression for the non-kinetic energy will vary from one
element to another of the body. Any element is determined by its position in the
standard configuration, v.e., by the vector x. Thus for a non-uniform solid, we have*

U=U®,eX). . . .« ... .. (1-33)

In adopting this expression for the non-kinetic energy, we are neglecting the effects of
plasticity ; and strictly, the subsequent theory is limited to solids strained within the
true limit of perfect (statical) elasticity. It is still possivle, however, that the theory
may represent approximately the behaviour of solids when the plastic effects are not
entirely absent, and particularly solids strained only within the practically defined
limit of perfect (statical) elasticity. For even in a plastic solid, besides the imperfectness

* Tn the case of body forees and body moments due to a field of force, the functional form of U is given by

U=zU (0, e, u T, X).
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of elasticity due to plasticity there may also be an independent dynamical imperfectness
of elasticity, which is the dominant factor in certain cases, e.g., rapid vibrations.*

1-4. Change of configuration.

We now consider a virtual change of configuration of a portion of the solid contained
in an arbitrary closed surface, lying entirely within the solid body. This arbitrary closed
surface is taken to move with the solid, 7.¢., it always contains the same set of elements,
being fixed in the solid but not fixed in space.

In the initial configuration, the temperature of the element at P is 0, and the dis-
placement vector at P is u. In the final configuration the temperature at P is 6 - 36,
and the displacement vector u 4 Su. The change takes place in a time 8¢; and the
solid is supposed to be both strained and straining in both the initial and final con-
figurations. The increase in energy of the element, of mass dm at P, is

5 [T dm + (U + U,) dm]

Neither the mass nor the number of the elements changes during this change of
configuration, so that the increase of energy of the portion of the solid under considera-
tion 18

5 (3T + 3U) dm,

the summation extending over all the elements of which the portion of the solid is

composed.
Now

dm = o dr,

where p is the density and d~ the volume of the element of mass dm.
Hence the increase in energy is

j”(ST+3U)pdr, L (140)

* Furst Note on Plasticity.—If the solid is plastic, a permanent set will remain after release from a state
of strain ; and the amount of the permanent set will depend on the previous strain history. Thus, the
physical properties of the typical element at P are distinguished, not only by the strain and temperature
of the element, but also by the permanent set it would acquire when released from the state of strain.
(The effect of the strain history on the physical state is possibly due to irreversible molecular slipping or
slipping at the interfaces of very small crystals contained within the element.)

When a solid receives a permanent set, the permanent set configuration has many of the properties of
the old standard configuration. It seems that a plausible theory of plasticity could be worked out by
putting e — e’ for e in the expression for the non-kinetic energy, where e’ is the permanent set that the
element would acquire if released from the instantaneous strained configuration. For in the plastic solid

he ““ physical strain > is not measured by the geometrical strain e, but (I would suggest) by the strain
e — e’. Within the practically defined limit of perfect (statical' elasticity, € must be less than O 0003 e.
I hope to deal with the effects of plasticity on these lines in a separate paper.

VOL. COXXXI—A. 3B
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the volume integral being taken over the volume of the arbitrary portion of the solid
at time ¢.
From (1-31) we obtain

ou, *u, .
3T = Frarey St=f 8y . . . . . (1-42)

where f, = 8%u,/0¢* is the acceleration of the element at time ¢.

Now

aU 36 + ........... (1-43)

B

3U =

A convention is necessary regarding the differential coefficient 0U/de,. This is
calculated with the conventions that e, and e, are to be treated as independent
variables for the purposes of this differentiation, and that U is expressed symmetrically
in e, and e;,. Thus 0U/de,, = 8U/0e¢,,.

The first law of thermodynamics tells us that the increase in energy of the portion
of the solid under consideration is equal to the total energy supplied, 7.e., the sum of the
mechanical work done on the portion of the solid, and the heat energy supplied.
Denoting by 3W’ the mechanical work done, and by 3Q'dr the heat energy absorbed
by the element of mass dm and volume d~ (the primes are used, in these cases, to indicate
that 3W’, 3Q are not necessarily perfect differentials), the mathematical expression of
the application of the first law becomes

(o145t ede =Wt [[[oQar. .. ... (1-44)

The mechanical work done is simply the work done by the stresses across the surface
of the portion of the body under consideration. Thus

SW' = H Dra S, dS

where v indicates the direction of the normal to the element of surface area dS, and the
integral is taken over the surface at time ¢.
Hence, using GREEN’s transformation,

SW' = Hj 5% (Ppo du,) dr

= j—” <3%aa—%]9m + Pa, 5%‘-3 8ua> dr.

But, from (1-23) and (1-22),

0
5x—ﬁ Su = 86 Eaﬁ'y Swy,
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80 that
’ i o
SW’' = jjjtsuaﬁpﬁa + Dga (Seap - Eapy 8‘(67):] dr. e e e (1.45)
8

By virtue of this expression for ¥W’, the relation (1-44) becomes

[[[ 67 + 50y 6 ds
- m [Su“’é%p’*“+ Do (B€0p — E»eyb‘wy)] dv + m 3Q) dr. K (1-46)

Now the volume integral in each term of (1-46) is taken over the volume occupied
by the arbitrary portion of the solid at time t. Since the portion of the solid is arbitrary,
the volume of integration is arbitrary, and the equation (1-46) must hold for the inte-
grands. Hence

(3T + 3U) p = %%& Sty + Ppo 305 — Do By 3, + Q' . . . (1-47)
B

Using the expressions (1-42) and (1-43) for 3T and 8U, we obtain

Buu <pfa - aiwﬁ:pﬁa> + Eaﬁy_pﬁa. 8‘(6.),

oU oU P .
—}—<p§2‘l'—8——]}ﬁa>86uﬁ—}-pé—6~39—8Q—0 ....... (1-48)
Any results that may be obtained from this equation must depend on the expression
for the quantity of heat 8Q)’, and this depends on the physical character of the change

of configuration.

1-5. Reversible and vrreversible changes of configuration.

The amount of heat energy required to raise the temperature of the element P, of mass
dm (and volume dr), by an amount 36 without altering its shape is ¢, 6 dm, where
¢, is the specific heat at constant strain—analogous to the specific heat at constant
volume for a gas. Now the physics of a reversible change is completely determined by
the initial and final configurations. Thus, if the change of configuration is a reversible
change, the amount of heat which must be supplied to the element P to increase the
temperature by an amount 36 and at the same time to alter the shape according to
a change of strain 3e is given by a formula of the type

SQ dv = (qop €0 + ¢, 50) dm, « o . o . . ... (1+51)

where ¢, is a component of a second order tensor. We still regard e, and e, as
distinct, and take g,, = ¢, without loss of generality.

In an ¢rreversible change the physics of the change depends not only on the initial
and final configurations, but also on the manner in which the change is made. It is

3 B2
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convenient to take the second law of thermodynamics in the form enunicated by KeLvin,
viz., “ There is in the material world a tendency to the dissipation of mechanical
energy.”* We suppose that a quantity of energy, 2F 3¢ per unit volume, is dissipated
during the change of configuration of the solid. It immediately follows from KrLvin’s
statement of the second law that the ““ dissipation function,” F, is essentially positive.

Since a quantity of energy, 2F 8¢ per unit volume, is dissipated, the amount of
mechanical work necessary to effect the change of configuration is greater by an amount
2F 3¢ per unit volume than the quantity of work which would be necessary if the change
of configuration were a reversible change. But from the first law, the sum of mechanical
work and heat energy which has to be supplied to effect the change is equal to the
increase of energy during the change. Thus in an irreversible change the quantity of
heat energy which must be supplied per unit volume is less by an amount 2F &t than if
the change were reversible. Thus, using (1-51), we have

3Q" dv = (q.s 36,5+ ¢, 30) dm — 2F 3t d=

in an irreversible change.
Since dm = pd~, this reduces to

d3Q =0 (s d€s+1¢,80) —2F32. . . . . ... (1-52)

Substituting this value of 3Q’ in the equation (1-48), we obtain

0
Su, <pfa ~ %, pm) + E,pp5 5w,
oU - .
+ [ <36a5 Qaﬁ\ ppa} 8604; “+ 0 <'a°"e— — Cv> 30 2F 3t=0. . e (1 53)

€<

1-6. The dissipation function : definition of a *‘ visco-elastic solid.”

So far, apart from the expression assumed for the non-kinetic energy which neglects
effects due to plasticity, we have merely developed the thermodynamics of a continuous
medium in accordance with the first and second laws of thermodynamics. To make
any further progress it is necessary to choose some expression for the dissipation function.
If the solid is perfectly elastic, changes of configuration are reversible and the dissipation
function is identically equal to zero. We suppose that, for the solid under consideration,

changes of configuration are characterized by the following properties :—

(1) In the limiting case when a change of geometrical configuration is made indefinitely
slowly, the change is reversible and there is no dissipation of energy. Any work done
in causing such a change is wholly recoverable as mechanical work.

(2) When a change of geometrical configuration is made at finite speed, the change
is irreversible, and dissipation of energy occurs. Work done in causing such a change
is not wholly recoverable as mechanical work.

* Sir W. Tromson. ‘ Collected Papers,” vol. 5, p. 11.
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A solid, the change of whose configuration is characterised by the above properties,*
is defined as a wvisco-elastic solid. It is clear from assumption (1) that a visco-elastic
solid behaves statically as a perfectly elastic solid.

According to assumption (2) above the dissipation function F depends on the value
of the rate of strain tensor oe/ot = &; though it may depend on other factors as
well e.g., the strain tensor e, and the temperature 6.

Expanding F in powers of the components of the rate of strain tensor by the generalised
TAYLOR’S theorem, we obtain

. R . .
F = F)o+ <-@—>é=0 €.+ % <é-é—F—~——>é €,s €.n + higher powers.  (1:61)

3¢, 00

We regard é,, and ¢, as distinet in the differentiation of the function ¥ ; and assume,
without loss of generality, that F is expressed symmetrically in terms of ¢,, and é,,.
But, by assumption (1), 2F 8¢ — 0 as & -~ 0.

Now
. de,
bup B = T2 B = Beyg # 0.
Hence
1 (Fla—o=0
an
<8F> e e e e e e e s (1462
- =0
aeag é=0

We further suppose that the speed of deformation is so small that we can neglect
powers of the rate of strain components of order higher than the second. The expression
(1-61) for F then becomes

B R
2F = (__>é=0 eaB 6mn

\0€,;0€,,
= Gugn Cog Cony  + + - o o e o oe oo oo o o . (1-63)
where

ap
S e

aBmn aéaﬁ a emn

* Second Note on Plasticity.—If the solid is plastic assumption (1) has to be modified to agree with the
modified form of the expression for the non-kinetic energy. For in a plastic solid, even in a fixed geometrical
configuration, an irreversible process is going on—possibly, as suggested in the first note, some sort of
slipping within the element.

A new assumption has been made in (1), over and above the one that the solid is not plastic. For
though the solid would be plastic if an irreversible process goes on when there is no change of geometrical
configuration, it would not necessarily be plastic if an irreversible process occurs in an infinitely slow change
of geometrical configuration.
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bR

The coefficients @5, Which we call the * viscous coeffictents,” are components of
a tensor of the fourth order in three dimensions. There are, in general, 81 components
of such a tensor, but in this case the number is reduced by symmetry relations. For
(opnn 18 Unaltered if « and p or m and n are interchanged, on account of the convention
that F is expressed symmetrically in terms of e,; and e,,. It is also unaltered if uf
are interchanged with mn, on account of the assumed commutative property of the
operators 0/0¢é,, and 9/2¢,, acting on F. (This assumption implies only the continuity
of the physical properties of the solid through varied rates of straining.) The
number of distinct viscous coefficients—the components a,,,—is thus 21 in the
general case of an solotropic solid.
~ Since F is now expressed (approximately) as a polynomial of the second order in the
rate of strain components, we have, using EULER’s theorem,

~
c .

2F = ., €5
Hence
OF 3t =L 8oy . e . (1-64)
af
where
aaf gy by o e e (1065)

af

We remark that the dissipation function is of the same form as for a viscous fluid,
and note also its similarity to the Ravreicr dissipation function which occurs in the
theory of a dissipative mechanical system.

“ Visco-elastic limits.”—We are now in a position to see the sort of limits within
which the resulting theory may give an approximately accurate representation of the
dynamical behaviour of solids. If plastic effects are absent and assumption (1) above
concerning the physical character of changes of configuration is correct, then the theory
is limited only by the limit of the validity of the expression of the dissipation function
F in its approximate form (1-63). An “ upper visco-elastic limit”* could therefore be
practicolly defined such that the theory of visco-elasticity is only applicable to solids
when the rate of strain does not exceed this limiting value.

If plastic effects are not absent and (or) the assumption (1) is incorrect, then the
dissipation function is not expressed correctly. The inaccuracy due to this faulty
expression is clearly most important for slow rates of strain, but may be unimportant
for higher rates of strain when the dissipation function defined above becomes greater.
Thus, even if the solid is plastic, it is possible that the theory of visco-elasticity may
represent approximately its dynamical behaviour, provided that the rate of strain
exceeds a practically defined limiting value, which we call the ““ lower visco-elastic limat.”
The theory is then applicable for rates of strain in between the upper and lower visco-
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elastic limits. The determination of the limits is a matter for experiment, but it seems
probable that for the more plastic solids the lower visco-elastic limit may be greater
than the upper visco-elastic limit, so that the theory of visco-elasticity would have
no range of applicability to such solids.

1-7. The equations of motion and the stress-strawn relations tn a visco-elastic solid.

We insert the value of 2F3¢ obtained in (1-64) into the equation (1-53), to obtain
0
3, <Pfa -y Pﬁa) + Eopy . 0w,
8

\ . T
+[P ('g'g;”"qaﬁ) +%“Psa} 3%3‘*‘9(%”‘%) 36 =0. (1-71)

The variations du,, dw,, ¢, 30 in this relation are the variations of the values of
U, Wy, €, 0 at the point P in the virtual change of configuration which has been con-
sidered. Though e, and @, are dependent on the gradient of u,, it is readily seen that
(apart from the fact that e,, = e,,) there exist a set of virtual changes of configuration
in which any one alone of all the variations involved in (1-71) is different from its value
in the change of configuration already considered.

Suppose, for instance, that the variations du, in the virtual change already considered
have values du, (%, ®, @3), duy (2, 5 z3), Sug (@, Z4 x3), throughout the solid, e, and
3w, being determined from the gradient of du;, Su,, dus;, according to the formulee
(1-22) and (1-23). Let us denote the values of the variations in the above virtual
change by the superscript 0, and the current co-ordinates by X;, X,, X, while the
co-ordinates of P are z,, z,, z,.

In a virtual change in which the displacement variations are

(8u1)0+ka (3%2)0, (8?,&3)0,

of all the variations Su, alone is different at P.
In a virtual change in which the displacement variations are

Ou)® + (X — @), (Bug)’  (Sup),

of all the variations e;, alone is different at P.
In a virtual change in which the displacement variations are

(31)’,  (Bua)® 4+ m (X — 25),  (Bup)® + m (X — 22),

of all the variations e,; and e;, alone are different at P.
The enumeration of the particulars virtual changes in which all except one of the
individual variations remain the same (with the exception that e, = e,,) is obvious.
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Hence we have a set of equations of the type (1-71), from which it is found that the
coefficients of u,, w,, 0, (e, + €4) all vanish. Thus

pfa=%spﬁa....................(1.72)

By Do =0 o o e (103
P+ P = | o (S — ) + a"fj +| o5 — s +5 ]

2[ \ai gaﬂ)+ff;] R R 0

%[elzcv (1-75)

From (1-73) we have p,; = ps, When « is not equal to £, so that the stress tensor is
a symmetrical tensor.
‘Thus (1-74) reduces to

_/eU \ . oF _
pyﬁ_p(aeaﬁ_gaﬂ)+f—, N ¢ KX ()

which are the stress-strain relations in a visco-elastic solid.

We note that the complete application of the principle of virtual work has given the
equations of motion (1-72), the symmetry property of the stress tensor (1-73), and the
stress-strain relations (1-76) as the result of one calculation.

In the case of a perfectly elastic solid the dissipation function vanishes identically
so that the stress-strain relations (1-76) become®

N (6U
Pus =P aeaﬁ““%ﬂ .

These stress-strain relations for a perfectly elastic solid can, of course, be reduced to
Hooxke’s law as an approximation, though by keeping a more accurate form it is
possible to discuss thermo-elastic relations. We now reduce the ““ elastic terms” in
the stress-strain relations (1-76) to a form which will enable us to investigate the
thermo-elastic effects in a visco-elastic solid.

It is first necessary to obtain formulwe for the thermal coefficients ¢,,, We consider
a change of configuration of an element of the solid of mass dm and volume d~ such

* An expression for the stress in a perfectly elastic solid similar to this is obtained by JerrrEYS in the
chapter on Elasticity in his *“ Cartesian Tensors ” (Camb., 1931). The density p does not occur in his
expression ; its presence here is due to the unusual definition of the energy per unit mass—see footnote T
p. 353. Apart from this difference, the remaining results in this section (1-7) are similar to those obtained
by JEFFREYS.
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that there is no displacement or rotation of the element. The change is also effected
infinitely slowly, so that the change is reversible, and the kinetic energy is always zero.
The expression (1-76) for the stress during this change becomes simply

— (U ) -
Pug = p <86uﬁ qaﬁ) e e e e e (1-770)
Inserting the value for 8Q’ in a reversible change, as given by (1-51), into the equation

(1+47) for U, we have

and this is a perfect differential.
Since the change is reversible, the increase of entropy of the element is a perfect
differential. But '

58 — 3Q d'l."
0
so that
Z(;-ﬂSeaB+%2se e (1-772)

is a perfect differential.
If further the change is isothermal, we see from the fact that (1-771) and (1-772) are

perfect differentials that%’f e, 1s a perfect differential. Hence, there is a function
W such that

oU > P __ Pou _ OW
— =08 =R =L 1-773
(\Bea,, Qs f P Ol ( :

Again, e, and e, are regarded as formally distinct in the differentiation of W, and we
assume that W is expressed symmetrically in terms of e,z and e,,.

Writing down the conditions that (1-771) and (1-772) are perfect differentials and
eliminating c,, we find that

By virtue of the relations (1-773), the stress-strain relations (1-76) for a visco-elastic

solid, reduce to the form

_ OW | oF
p“ﬁ—p@+3éaﬁ'

.......... (1-775)

The function W is a function of the temperature 6, and the strain e. Expanding it
in powers of the strain components by Taylor’s Theorem, we have

W =0+ ¢ 46,6 + % € oomn€uslmn -+ higher powers, . . . . (1-780)
where

, ) / W
c =\(W)e=0; Cop = <aW >e=0.

A a— 1-781
86a3>e=0 3 Cos (\aeageem'n ( )

VOL. CCXXXI—A. 3 ¢C
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Thus
A , , .
%—s =¢',6 + ¢ womn€un + higher powers; . . . . . . (1-782)

and, supposing that the strain is so small that powers of the strain components of order
higher than the first can be neglected in the expression for the stress, and using the

oF
0€,4

formula (1-65) for , the stress-strain relations (1-775) for a visco-elastic solid further

reduce to :
’ .
]Oas = PC,aB + PG aﬁmnemn + aa8m17,en7,w """" (1 ¢ 790)

The density ¢ (at time ) depends on the strain. Its value is given by

e(l4+A)y=1p¢, « « « v v o . (1-791)

where p, is the density in the standard configuration, and A is the dilatation. The
dilatation is expressed in terms of the strain components by the well-known formula

A=14TUpms « « « « o v v v oo (1-792)

U,.. being a component of the second order cartesian substitution tensor. (Care
should be taken to avoid confusion with the non-kinetic energy function U.)

1:8. The thermo-elastic relations in ¢ visco-elastic solid.

The coefficients ¢ .5, ¢ ,om depend on the temperature, and the viscous coefficient
@.omn may depend on both the temperature and the strain. Thus the value of the stress
in a visco-elastic solid, given by the stress-strain relations (1-790), depends on the
temperature 6, which is determined by the initial temperature and the thermal character
of the subsequent changes of configuration. We first express ¢’,, in terms of ¢’,g.
and the coeflicients of thermal expansion.

Suppose the solid is in its unstrained standard configuration at temperature 0,, and
that its temperature is raised to 6 without stress. The resulting thermal expansion
causes a displacement represented by the equation

Uy =1(0 —0g) Aueg,. . . . . . . . . . . (1:810)

where A, 1s a component of a second-order tensor.
The resulting strain is given by

=1 (A + A) (0 —0,) =B, (0 —0,), . ... (1-811)

where B, is a component of a symmetrical tensor.
Since, by hypothesis, the expansion took place under no stress the stress-strain
relations (1-790) give
0= e {C’uB + C’aanan (6 - 00)}'
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Thus*
c',aB - - C’aﬁmann (O - 60), ........ (1 ‘812)

and the stress-strain relations (1-790) reduce to
Pag = 0€ ugmn [€mn — Bun (6 — 00)] + Uopmn€imne + « « o (1-813)

Now powers of the strain components of order higher than the second have already
been neglected in obtaining the expression (1+790) for the stress components. Keeping
to the same order of approximation, we replace p by its constant value in the standard

A A

OF

A

SOCIETY

OF

configuration, s.e., p,. Putting
poclaﬁmn = Gaﬁmn, ooooooooo e o o (1 * 814)
the stress-strain relations for a visco-elastic solid become
paﬁ - Caﬁmn [emn - an (e - e0)] + aaﬁmnémfz- L (1 '820)
The coefficients c¢,q,, are the well-known elastic coefficients (or constants). They
are subject to the same symmetry relations as the viscous coefficients @ 4, (see §1-6),
and only 21 are distinct in the general case of an solotropic solid.
When changes of configuration take place isothermally, the temperature 0 is constant
and equal to 0, ; and the stress-strain relations assume the simple form
Pt = Copmn € = Gagmn Emne + « « o o o o . (1-821)
This is the same as the stress-strain relation suggested by VoiaT (see p. 346), with the
exception that here only 21 of the viscous coefficients a4, are distinct.
In the case of a non-isothermal change of configuration the change of temperature
is given by equation (1-52), namely,
¢, 36 = ‘.31. (3Q 4 2F3t) — s 86ss « - o o . . . (1-830)
But we have the result (1-774) that
0 (oW
=9 L (o0
q"'ﬁ 06 <aeuﬁ>
= 0 ¢, Byn approximately, . . . . . . .. (1-831)
. - oW /
using the expression (1-782) for 5o and (1-812) for ¢/,
af
* In the case of initial stress, ¢/us == 9%g/po When 6 = 0,  The presence of p does in this case make
a difference to the expression for the stress.

3¢2
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Integrating equation (1-830), we obtain
.‘t l ,
¢, (8 — 6p) = jO.P. (3Q" 4 2F 81) — q.s0.6

approximately, as ¢.s, given by formula (1-831), is independent of the strain.
Changing the dummy suffixes in this result from «, & to m, n, we have

1
0, (6 — B) = jo é (3Q' + 2F 58) — Goubome  « - . . . (1-832)

Now
.’
Ca,anan = PC aBm’ann

=E%f by (1-881). . . . .. (1-833)
Thus the general stress-strain relations (1-820) can be written

Pog = Copnunbinn — P_qﬂs (9 - e0) "I_ aaﬁnmémn
= \Caﬁnm + Pq.aﬁqmn) mn + aaﬁnméwm ,lﬁ j (SQ, + 2F 8?:) . . (]. '834)

using the expression (1-832) for (6 — 0,).
Thus, taking temperature changes into account, the stress-strain relations of a visco-

elastic solid depend on the previous strain history on account of the term — Eelc"—” .[1 2F 3t.

v

For adiabatic changes 3Q" = 0, and the stress-strain relations (1-834) reduce to

. .
paﬁ = c”aﬁmnenm + aaﬁnmémn - % J 1 2F 8. ... .. (l .835)
Oc, Jop

Comparing this with the stress-strain relations (1-821) for isothermal changes, we see
that the *“ adiabatic elastic constants ” are

c”a/snm = Cugmn + P{Igfmn} """ (1 .836)
where, by (1-831), »
Gop = 2 CooBrs (1-837)
and the stress component p,, is also reduced by an amount Peq“‘* \ Lo st.
Cy Jo P

Formula (1- 836) i1s the well-known formula for the adiabatic elastic constants.*
The term — wj ; 2F 3¢, due to the viscosity of the solid, is negative or zero in the
v 0
case of an isotropic visco-elastic solid.

* See, for instance, Voiar, ¢ Gétt. Nach.,” vol. 2, p. 174 (1900).
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Changes of configuration of a solid are never really adiabatic, but 3Q’ is given by the
formula for the conduction of heat,

3Q = (K ae)sz,

- ox, ox,

where K is the thermal conductivity.

The stress-strain relations in their accurate form (1-834) lead to integro-differential
equations of motion. The modifications due to thermo-elastic effects are not of any
importance in problems concerning the vibrations of solids, though the integral term
may be important in the discussion of afterworking effects. As an approximation,
the stress-strain relations are taken in the simple form for isothermal changes, namely
(1-821). The equations of motion and the stress-strain relations for a visco-elastic
solid in this approximate form, differ from the corresponding equations for a perfectly
elastic solid only in the fact that the eléstio constants ¢, are replaced by linear
0
TR

Condition for the stability of equilibrium of the standard configuration.—It is a matter
of experience that a solid is in stable equilibrium in its standard configuration, as here
defined. As we are neglecting thermo-elastic effects, we put

0PErators Coupmm —+ Gugmn

Claﬁ = 0’ Qaﬁ = 09 0= e()‘

oU _ oW

Thus (1-773) reduces to Se. 9o

. ’
; and we have U = 1¢/,5,.€.5€10-

The condition for stability (necessary as well as sufficient since there are dissipative
forces)* is that the non-kinetic energy should be a minimum in the standard configura-
tion, that is

JU eUdz > 0,
But )
P U = % P c,aﬁmneaBemn

— 1
—_ Ecaﬁnmeaﬁemn 9

neglecting powers of the strain components of order higher than the second.
The condition for stability of equilibrium is thus

~

“jcaﬁmneaﬂe,,mdr>o. e . (1-840)

If, as we have already supposed, there is no initial stress, then each element of the
solid is in stable equilibrium in the standard configuration. The condition for stability

then becomes the well-known
' Coomnuglun > 0.« o o o . o . . . .. (1-841)

* See Lamp’s ““ Higher Mechanics,” p. 208.
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1-9. The isotropic visco-elastic solid.

In an isotropic solid, the viscous and elastic coefficients, @,4,, and ¢,g.,, must be
sotropic tensors. We accordingly express @,p., and ¢,q., as the most general cartesian
2
ot

tensor of the fourth order in three dimensions.* The operator C,pum -+ osmn s

thus given by a formulaf
9
ot
=(2+ 2 2) Ul (b + 0/ 2) (Ul + VT + (0 + 02
— a ¢ aB ™~ mn a ¢ am ~ Bn an ™~ pm a t)
X (UumUBn - Ua,nUBm)‘

Ca,an "I" aaﬁmn

Hence, the stress-strain relations (1-821) become, for an isotropic solid,

: , . .
PaB:<H— A %}UaUmemn-l.-<u+ p %)(ea3+eﬁa)+<v v %)(eﬂﬁ__%)

. ;O k ’ 0" . .
—m%l+l&WL+%u+uawm....... ...... (1-91)
where A = U,,.¢,., is the dilatation.

From the condition of stability of the standard configuration (1-841) we obtain the

well-known conditions
AR S0, p=0 ... ... (1-92)

for the Lam# elastic constants, » and p.
From the fact that the dissipation function F (= @,4,.€,s¢.:,) must be positive, we
obtain the conditions
N2 =0, W =0,. . . . ... C .. (1-93)

between the corresponding viscous coefficients, 2’ and p'.

§2. Tue ViBraTIONS OF A Visco-Erastic Sonip: SoME GENERAL THEOREMS.

2-1.  The general mathematical problem.

When a solid body is in a certain state of strain (displacement) and straining (motion),
and it is then acted upon by certain constraints applied to its surface, it seems to be almost
self evident that the resulting motion of the body is completely and uniquely deter-
mined. We now investigate the equivalent mathematical problem, namely, the
solution of the equations of motion of a visco-elastic solid subject to given surface
(boundary) conditions and given initial conditions of displacement and velocity.

* See, for example, JErFreYs, ‘ Cartesian Tensors,” p. 70.
+ U,s is a component of the second order substitution tensor.
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We take the stress-strain relations in the form (1-821), namely,

pﬁa - pu,s = Oaﬂnmemn _l— aaﬁmn émn' L S A (2. 11)

The equations of motion (1-72) become, on substituting this value for the stress
components,

. a z .
8t2 55"3 ]7 - axﬁ (caﬁmnemn + aaﬁnnem'n)' ¢t (2 12)

Now in this equation, as we have already neglected thermo-elastic effects, the elastic
coefficients ¢, are constants; the viscous coefficients @z, é.lthough independent
of the temperature, may still be functions of the strain e (see § 1-6) ; and the density
is also dependent on the strain according to (1:791), 1.e

e (1 + Unmemn) = Po-

Now the strain components in (2-12) are determined by the gradient of the dis-
placement according to

ou ou
— 1 ' n
Cn 2 <awn _l_ awm>

It is supposed that the displacement u, (« =1, 2, 3) is so small that the density ¢
and the viscous coefficients @,g., in (2-12) can be replaced by the constant values they
assume when there is no strain. The equations of motion (2-12) are thus linear in the
displacement components. In this approximation we have still kept to the same
order of approximation that was involved in the expression of the strain-energy function
W (¢f. (1-780)).

Now the a-component of force across the surface at time #, and measured per unit
area at time t, is given by*

Po=p.=vePper - - - . . . . . ... (2:13)

where v denotes the direction of the normal to the surface at time ¢, and v, is the cosine
of the angle between the directions denoted by v and B. As an approximation it is
supposed that v denotes the direction of the normal to the same element of the surface
in the standard configuration, and that equation (2-13) gives the a-component of force
measured per unit area in the standard configuration.t Tt is readily seen that this
approximation only involves the neglect of terms in (2-13) of the second order in the
displacement components u, ; so that the approximation still keeps to the same order
of approximation as that already assumed in the expression of the strain energy
function W.

* The reader is again reminded that repetition of a dummy suffix indicates summation over all possible
values of that suffix.

1 For instance, in problems of the vibrations of cylinders it is always assumed that the normal to the
curved surface is perpendicular to the axis, though it is not exactly so.
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It is not necessary in what follows that the solid should be uniform. We remind the
reader of the condition for stability of equilibrium of the standard configuration (1-841),
7.6.,

Copmn @ag in > 05 « o v . o Lo L. (2-14)

and of the condition that the dissipation function is essentially positive, namely,

auﬁm'n émB emn > 0. ........... (2' 15)

2:2.  Umqueness of solution.

TuEOREM [.—The solution of the equations of motion of a visco-elastic solid, subject
to given surface conditions and a given initial displacement and velocity for every point of
the solid, is a unique solution.

For, let there be two such solutions, which we write as

uy = u (a=1,2,3),

and
U, = u,» (x=1,2,3).

The equations of motion (2-12), namely,

2 =2 (py)
° e g Pee

are linear in the displacement components u, (« = 1, 2, 3).
Thus the displacement represented by

U, =uY —u® (x=1,2,3)
18 a solution of the equations of motions ; that is

?u, 0 .
R U S (2-21)

where the stress components p,, are calculated from the strain due to displacement
components u, = u,% — u,?.
From the equation (2-21), we form the integral equation

¢ ou,( 0*u, 9 > . .
jgdt Hf 5 Kp % 7, Ps,)dT =0, . . .. ... (2-22)
in which the volume integral is taken over the volume in the standard configuration.
Now*
t du, j‘l [ <8u >2 t
— & = == .
Ldt m P e { J o2 (%) | &

* The density p is constant here ; the viscous coefficients a,gun are also constant. These approximations
were introduced in the last section (2-1).
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But
ou ou, Y ou,®
ot ot ot

and vanishes when ¢ = 0 since ou,V/0t and 0u,?/0t are each equal to the given initial

velocity. Hence
j;dt”j agt 88? dr '—-”jpTd‘t, e e e e e e . (2-23)

where T is the kinetic energy per unit mass at time ¢, and is therefore essentially positive.
The remainder of the integral in (2-22) can be transformed into a surface integral
and a volume integral. For

j dt .”J 3 Bwﬁ Pae 7 = — j:dt j” [5%3 {Psa a—;‘f} — Psa 53—6; aa?’;“] drv. (2-24)

Using GREEN’S Transformation to transform the integral of the first term, we have

__ﬂdt”j%s{pﬁa at}dr—— _j:dtjjpm Mgy, ... (2-25)

The integral of the second term in (2-24) can be reduced to simpler form, since

0_ou, 2 ou,
Poe g Bt~ P 5 om,

= Psa é@t (e,s — Bopyw,) by (1-22) and (1-23).
But E,4,p,. = 0 by (1:73), so that

0 Bu 06,

Poe 5— ax a7 ot = Psa o = Capmn emn a8 + au/smn mn e

aB;

and the integral of the second term in (2-24) is equal to

t
Jodt [[j(caﬁmn €mn eaB + aaﬁmn Cimn eaﬁ) d’t‘.
o

Now @,pmu €my €,s = 2F, which is essentially positive ; and

5't (caﬂmn Con eaB) = C.gmn (émneaﬁ —+ ea,e) = QOaan €mn €ag SINCE  Cupyy = Cpypep.

Thus

j:dt j:” Coprn €mn €03 T = % J.”‘ [caﬁm Com @, ]:d*r.

VOL. CCXXXIL.—A 3D
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But e¢,=0 when ¢ =0, since », > and u, are each equal to the given initial
component displacement.
Hence

j:dt “J Pea a—i; a—a%a T = %‘ Uj Capmn Cmn Cop dr + j:dt Hj Qopmn €, éaﬁ d. (2-26)

Both these integrals are essentially positive, since their integrands are essentially
positive—the first on account of the condition for the stability of equilibrium of the
standard configuration (2-14), the second on account of the condition that the dissipa-
tion function is essentially positive (2:15). We have now expressed the integral in
(2-22) as the sum of three volume integrals which are essentially positive (expressions
(2-23) and (2-26)), and a surface integral (2-25). We proceed to show that the surface
integral vanishes.

The given surface conditions may be of various types. One or the other (or a com-
bination of both) of the two following types of surface conditions is the type of condition
that holds in the case of either forced or free vibrations.

(@) The surface of the solid is forced to assume a certain shape, possibly varying
with the time, by means of forces or constraints applied to the surface. Thus the
component displacements u, are given as a function of ¢ at the surface of the solid.

(b) The surface of the solid may be subject to certain given tractions whose com-
ponents P, are defined as functions of the time. The case of free vibrations is included
in this class, as it is simply the case when the given value of the surface traction is always
Zero.

A surface condition of type (@) may apply to one portion of the surface, and a surface
condition of type (b) to the remainder; but the two types of condition can not, in
general, hold together over the same portion of the surface.

Over the portion of the surface where the surface conditions are of type (a), »,* and
u 2 are identically equal, so that u, = u,* — «,® vanishes identically. Hence

Now by (2-13) P, = p,,; so that, over the portion of the surface where the surface
conditions are of type (b), p,.” and p,,* are identically equal. Hence

1 2
pva —_ pva( ) —_ pva( ) —_ 0.

Hence p,, %%ﬂ = 0 over all the surface.

Hence the surface integral (2-25) vanishes, for

_ ﬁd‘ [ . aa@;a =0, . . o (2-27)
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Thus we obtain finally from the transformation of the original integral equation
(2-22)

(v 3 [ s+ [ [ ormice = . 9

As each of these three integrals is essentially positive, each integral must vanish
separately. Further, as each integrand is essentially positive, each integrand must
vanish separately.* It follows that the values of the displacement components w,
must be constant. But initially %, = 0 since », " and »,® are each equal to the
a-component of the initial displacement. Hence

u® —u® ="u, =0, («=1,2,3)always.
The two solutions

and

u, =u? (x=1,2,3),
are thus identically the same ; and any solution of the equations of motion, subject to
given surface conditions and given initial conditions of displacement and velocity for
every point of the solid, is thus a unique solution—which proves Theorem I.

2+3.  The problem of the free vibrations of a visco-elastic solid : some general theorems.

Now, it is well known that the free vibrations of a perfectly elastic solid have
properties analogous to those of the vibrations of a conservative mechanical system.7
It is to be expected that the free vibrations of a visco-elastic solid will have some of
the properties of a dissipative mechanical system—not the more general cyclic system.
For, on account of the symmetry relation @,emm = G between the viscous coefficients
there are no terms in the equations of motion of a visco-elastic solid analogous to the
gyrostatic (or cyclic) terms which occur in the equations of motion of a cyclic system.

The mathematical problem is to solve the equations of motion (2-12), namely

o%u,

o .. 0 oe n>
= A =— —m N X
P atz axﬁ (pﬁa) a.’DB (\Caﬁmn Cmn + aaﬂmn at ) ( 311)

subject to the condition that there is no traction across the surface, which is

3 .\
Pre = Vg Ppa = Vg <Caﬂmn Cinn —I" @ opinn é’t 6mn> == 0, e e e e (2‘312)

using the expression (2-13) for the surface traction.

* Tn the case of initial stress the condition for the stability of equilibrium of the standard configuration
is (1-840), so that the second volume integral is still positive though its integrand is not essentially positive.
Results follow in the same way as in the case of no initial stress. This is also true for other theorems in § 2.

+ See Lord Ravreren’s ¢ Theory of Sound,” vol. 1, and Love’s ¢ Elasticity,” p. 179.
I See, for instance, Lamp’s *“ Higher Mechanics,” p. 234.

3 »p2
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There are three equations of motion and three surface conditions according as «
indicates the directions 1, 2, or 3 of the rectangular axes; and the suffixes 8, m, n are
dummy suffixes. The density ¢ and the viscous coefficients @, as well as the
elastic coefficients c,gum, are taken as constants according to the approximations
discussed in § 2-1.

A discussion of the existence of a solution of these equations does not seem possible ;
but, on the assumption that a solution of a certain type exists, it is possible to discuss
some of the properties of the vibratory motion it represents. We look for a solution

of the type
u = ¢ (2, T, 3) ",

where ¢ is a function of the co-ordinates z;, z,, 25 only, and € is written for exp. (pt).
This vector solution is equivalent to a set of solutions for the component displace-

ments, such as
W= (@=1,2,38). . .. .... .. (2-321)

Substituting this set of solutions for the component displacements into the equations
of motion (2-311), we have

3 !
sz¢a == a——' (caBm-n + pa’aﬂmn) Cpne  « + ¢ o o e o (2'322)
Lg

Here the strain components e, are calculated from the displacement represented by
u, = ¢, (@ =1,2,3).

These equations are three partial differential equations of the second degree and
hold throughout the volume of the solid. The three independent variables are
z, (¢ =1,2,3); and the three dependent variables are ¢, (e =1,2,3).

The surface conditions (2-312) become, on substitution of the values of the displace-
ment given by the solution (2-321),

Ve (Copmn & Plogmn) Gn =10. « « « « « o o . . (2-323)

Here the strain components are defined as in (2-322) above, t.e., €, = %(%“ -4 g—i—)ﬁ>

These are three surface conditions holding over the whole surface of the solid.
It seems that the differential equations (2-322) will provide a solution for the dis-
placement components in terms of p, say

o =2 (T3, Tg, X3, P), (0 =1,2,83). . . . . . .. (2-324)

This solution will contain arbitrary constants, in addition to the arbitrary multiplying
constant, which it obviously contains. Substituting these values for ¢, in the surface
conditions—where the co-ordinates x, have definite values—it is found in soluble
problems that the values of the arbitrary constants in the solution (2-324) can be deter-
mined (except for the multiplying constant which is clearly still arbitrary) and that an
equation for p can be obtained. This equation is called the frequency equation.


http://rsta.royalsocietypublishing.org/

JA '\

/ y

A

a
)\
LU

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

V. \
AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

J. H. C. THOMPSON ON THE THEORY OF VISCO-ELASTICITY. 375

To any root p of the frequency equation, there correspond a set of functions ¢,
determined uniquely by the expressions (2-324) for ¢,, except for the arbitrary multi-
plying constant. _ '

Now, in the case of perfect elasticity, @,e., = 0; and p occurs only as p? in the
equations of motion, and is absent from the surface conditions. Thus it can occur in the
frequency equation only as p2. It is found, in soluble problems in the case of a perfectly
elastic solid, that the frequency equation is a transcendental equation for p?; so that
there are an enumerably infinite number of pairs of equal and opposite roots for p.

In the more complicated case of visco-elasticity it seems reasonable to suppose, in
the first place, that the frequency equation does not contain any imaginary terms
explicitly, on account of the real form of the differential equations (2-322) and the
surface conditions (2-323). We assume further that the frequency equation is trans-
cendental, and that p occurs in the frequency equation in quadratic form. There will
thus be an enumerably infinite set of pairs of roots for p, which we denote by p,®), p,®
(r being a positive integer). A particular pair of roots p,v, p,® must be both real, or
complex conjugates. :

Also, in view of the real form of the differential equations (2-322), it is reasonable
to suppose that the solutions (2-324) for ¢, in terms of p do not contain any imaginary
terms explicitly. Thus the set of functions ¢, corresponding to a real root of the
frequency equation will be real ; and the two sets of functions corresponding to a pair
of complex conjugate roots of the frequency equation will be complex conjugate sets of
functions. We denote the sets of functions ¢, corresponding to a pair of roots p, %, p,®
of the frequency equation by ¢, ™ and ¢,7® (« = 1, 2, 3) respectively.

The equations (2-324), from which the functions ¢, are calculated for any value of p
which is a root of the frequency equation, contain an arbitrary multiplying constant
—the value of the constant is the same for each value of «, of course. It is supposed
that the value of the arbitrary constant is the same in the calculation of ¢,”®, ¢ O®
which correspond to a pair of roots of the frequency equation.

The sets of functions ¢,”®, ¢,”® are determined uniquely by imposing the normalising
relation

([[eprmgomar=1 .. ... ..., (2-331)

the volume integral extending over the volume of the solid. ;
This is taken as the normalising relation irrespective of whether ¢ MM, ¢ M@ are
real or complex. If the roots p, ¥, p,® are complex conjugates then ¢, 7™, ¢.”® must

be of the form )
$OW = OV LGB g OO — G g O

where 6,7, ¢, are both real functions. If the roots p,®, p.® are both real, then
the corresponding sets of functions ¢, ¢ O® must be both real, or both entirely
imaginary—the arbitrary constant determined by the normalising relation (2-331)
may be real or imaginary in this case, but not complex.
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There are, therefore, an enumerably infinite set of pairs of solutions of the equations
of motion, subject to the condition of no traction across the surface, of the form

u, = L,¢ 00 PR 5 U, = M, ¢ 0@ e”rm‘, («=1,2,38), . . (2-332)

where L,, M, are arbitrary constants.*

The character of the vibratory motion represented by the solutions (2-332) for the
displacement components depends on the values of p,V, p,®. We prove the following
theorem.

TreorEM IL.—Any “ pair” of roots of the frequency equation for the free vibration of
a visco-elastic solid are roots of a quadratic equation with real positive coefficients.

We suppose that two solutions (not necessarily a pair) for the displacement com-
ponents u, have been obtained in the manner described above ; say

w, =uY =P’ (0=1,2,38), . .... .. (2-341)

o

and
U, =ul = Ve (0=1,2,3). . ...... (2:342)

The sets of functions ¢,* and ¢, have been normalised according to (2-331) and are
thus uniquely determined.
Since (2-341) is a solution, from (2-322) we obtain

0
ppk2(/’u(k) = % (Caﬁmn —I'_ pkaaﬁmn) e'nm(k)) L (2' 34:3)
B

where the strain components e,,* are calculated from the displacement components
U, = ¢, (« = 1,2, 3).
From (2-343) we form the integral equation

j‘jj- [Ppkz(ﬁa(k) - i%' (cu,ﬂ’ﬂm + plcaaﬁmn) emn(k)] ‘lsa(b dT = Os L (2'34’4)
B

where the volume integral extends over the volume of the solid.

Now
jj:[ 2 [(caﬁmn p]gaaﬁmn) 6,,,.n(k)] (}Sa(l) dr
0%
y + ' — 0
= jjj]]’ 0 [(Caﬁmn pkaaﬁnm) em”(ﬁ,) an(l)] [(caﬁmn + pka,aﬁ”m) emn(k)] v ¢a(l)} dr
o%s 0y

( , 0
= jj Vg (caﬂmn "l’ _’pk“a/s‘mn) emn(k)%(l) ds - }jj (Casnm + pka’aﬁmn) emn(k) 5}; ¢a(l) d't;
B

using GREEN’S Transformation for the first term in the volume integral.

* The summation convention is not taken to hold for the repeated suffix r, only for a repeated suffix
which indicates an axial direction.


http://rsta.royalsocietypublishing.org/

a
J,
A

%

A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I~
b \

S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

J. H. C. THOMPSON ON THE THEORY OF VISCO-ELASTICITY. 377

The surface integral vanishes by (2-323). Now

0 41
—e OV _F g0
‘}Sa - eaB aﬁ‘ywy
0w,

from (1-22) and (1-23). Also
E

aﬂycapm” = O arnd Enﬁyaapmn - 0

since
Cogmn = Cgamn and Gopmn = Aggmns

Thus the integral equation (2-344) becomes

jjj‘ [Ppkz‘ls'a(k)‘/’a(l) "I" (Casmn + pkaaﬁnzn) enm(k) eaﬁ(l)] dT = 0.

We write this as

PEA D)+ pBE D) O D=0, ... ... (2-345)
where - '
A D = [[[ o460 ax
B (k, I) = m aﬁ,mem,,("’ea O ; & . (2-346)
jj.j aanemn ea (l)dT
Now
a’aﬁmnewm(k)eas(l) = aasnmemna)eas(k)a
since
Gopmn = Cpnage
Hence

Bk 1)=B(k);
C (k1) =C( k).
A D) = A Q).

and similarly

Also

The result (2-345) could clearly have been obtained with the superseripts £ and 1

interchanged ; so that
pPALE)+ B k) +C(, k) =0.

Hence, since A (k, 1), B (£, 1) and C (k, I) are symmetrical in k and I, it follows that
3 and p; are the roots of the equation*®

PARD+pBED+CHD=0. ... ... (2:347)

* The similarity of equation (2-347) to a similar quadratic equation in the theory of a dissipative
mechanical system should be noticed. The equation is AT (x, ') + AF (x, ') + V («, a’) = 0 (see
Lawmp’s ¢ Higher Mechanics,” p. 232, equation (8)). Here A corresponds to our p. The analogy between
the function B and the dissipative function F in a mechanical system, and between the function C and the
potential energy function V in a mechanical system should be noticed.
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The result (2-345) could have been obtained in just the same way if £ and [ are equal.
Thus p, is a root of

P Ak k) -+ p B (k, &) + C (b, ) =0,

though not necessarily a double root.

Let the superscripts (k) and (I) now be the superscripts (r) (1) and (7) (2) of a pasr of
solutions. Thus, from (2-347) we see that a pair of roots p¥, p of the frequency
equation are roots of the quadratic equation

AP +Bp+C =0 . ... .. ..... (2-348)

where A; has been written for A (r1, 72) ; B, for B (1, #2) ; and C, for C (21, 72).
To prove theorem II, it remains to show that A,, B, and C, are always positive.
Now A4, 1s positive because '

A, = HJ' 0 NWP OO do =1,

by the normalising relation (2-331).

To show that B, and C, are positive it is necessary to consider separately the case in
which ¢,"®, $."® are complex conjugates, and the case in which they are both real
(or wholly imaginary).

We consider first the case in which ¢,7®", ¢,”® are complex ; and given by

qsa(r)(l) = ¢a(r)’ —l_ Il:‘;ba(‘r)”a ¢a<r) @ = (ﬁa(r)) - ?; qsa(r)”’ Sa’y:

where ¢, ¢, are both entirely real.
Thus
e =g @ Lo O and 6,7 = 6" —iem;
so that

Br = jjjﬁ aaﬁ/mn (emn(r)’ + 'iemn(r)”) (eaﬁ(”, - ieaﬁ(r)”) d't’
={B@,r)+B@E", "} B,y —=B@E, ")}
= B (', ") 4+ B (", "),
since B (", 7') = B (¢, #"") by the symmetry property of B (%, 1).
Now the condition that the dissipation for the visco-elastic solid is essentially positive
is given by the condition (2-15), namely,
“aﬁmnémnéaﬁ > 00

Let the rate of strain components in this expression be calculated from the displacement

represented by ,
w, = ¢t (2 =1, 2, 3).
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The rate of strain components are thus e,,"”, and the condition that the dissipation
function is essentially positive becomes

aaﬁmnemn(r) ea,s(r) > 0°
Hence
B (7',, T’) = -H:;‘ aaﬁmnenm(ryea o d’t‘ > O-

Similarly
B, +)>0;
so that we have
B, > o.
In the same way we show that

C,=C@,ry4+C@",r);

and each of these terms is positive on account of the condition (2-14) for the stability
of equilibrium of the standard configuration. Hence C, > 0.

We now consider the case when 6,7, ¢ ® are both wholly real or both wholly
imaginary. Now p,®is a root of the equation

A(rl,r1)p* + B (r1,71) p 4 C (r1,r1) = 0.
If the ¢,® are real, then

A(rl, 1) = UJ 0 ¢ WG D dr > 0,

since the integrand is the sum of squares.

 Also we can show that B (r1,71) > 0, in exactly the same way that it was shown
that B (r',7') > 0, this result being due to the essentially positive character of the
dissipation function. _

Similarly, we show that C(r1,71) > 0, from the condition for the stability of
equilibrium of the standard configuration.

Thus A (r1, 71), B (1, 1), C (r1, r1) are all positive.

In the case when the ¢,7® are wholly imaginary, we can take the imaginary factors ¢
outside the integral sign, and it immediately follows from the foregoing results that
A (r1, r1), B (71, r1), C (r1, 1) are all negative.

In either case p,*) is a root of a quadratic equation with real positive coefficients.
Since, by hypothesis, p,*) is real in the case under consideration, it follows that it must
also be negative. Similarly, we show that p® is real and negative.

But p,?, p,? are roots of equation (2-348), namely, ’

Arp2 -+ Brp -+ Cr =0,

in which A, =1. Since pY, p/» are in this case real and negative, B, and C, are
positive.

VOL. CCXXXI.—A. 3 E
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Thus, whether p*, p,® are real or complex, A,, B,, C, are all positive, which proves
Theorem I1.

We are now in a position to determine the character of the free vibratory motion of
a visco-elastic solid. To each pair of roots of the frequency equation there corresponds
a pair of solutions for the displacement components given by (2:332). From these
solutions we build up the more general solution

u, = §1 L 20 en™ 1 M 0P ™, (a=1,2,8). . . . (2-351)
The motion represented by an individual term of this series expression differs according
to whether p,V, p,® are complex or real. We consider the two cases separately.

(a) The pair of roots p¥, p» of the frequency equation are complex. From
Theorem IT above, it immediately follows that the real part of p @, p,* is negative,
so that

prm —_ P’r + ?310",-, Pr(z) _ ]9’r — ,ipur’

where p’,, p”’, are positive.
The functions ¢, 70, ¢ O are of the form

W = GO LG A GO = g O g @
In order that the motion represented b
P y
— T ©W e, | N b 0@ gp, P —
U = rg{)a e+ N ,.gﬁa er 7, (GL =1, 2, 3)

shall be real, L, and M, must be complex conjugate constants. The expression for the
displacement components thus reduces to the form

u, = Ae " [$, cos (p it +¢) — ¢ sin (p") + &), («=1,2,3). .(2:352)

This represents a damped harmonic oscillation of arbitrary amplitude and phase in
which the period and the damping factor are the same for every point of the solid ; but
the phase <, given by
éVsin e, + ¢, cos e,
$ . cos e, — $ P sine,’

tan € =

varies from point to point of the solid. This is similar to the damped harmonic oscilla-
tion of a dissipative mechanical system, the phase being different, in general, for each
particle of such a system.

(b) When p, v, p,2 are real, it follows from Theorem II that they must be negative.
We have also seen that the sets of functions ¢,7®, ¢ O are both wholly real or both
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wholly imaginary in this case. The constants L,, M, are thus wholly real or wholly
imaginary, but independent of each other, in order that the motion represented by

(,

u, = L, 00 L M,$ 0@ e (2 =1,2,3),
shall be real. The motion represented by this expression for the displacement com-
ponents is the superposition of two exponentially damped aperiodic motions, each of
arbitrary initial amplitude.

We have not yet fixed the order of the terms in the general solution (2-351) which is
indicated by the suffix » (r is a positive integer).

Now p,, p® are roots of

Ap*+ Bp+C =0,

where A, = 1. B, and C, are positive ; and are given by the formulse

B, = j j j gl Vs P dv ;. C, = “j Copmn®un” Ve P dr. . (2-353)
Thus
B, [ [ 40,]*‘ -
WO op®=2rs ) 1Tl L (2-354
P P 2 i * B,.Z J ( 2 )

and p2, p2 will be complex or real according as

D, <or>1;
where
D,=B24C, . . . . . . ... ... (2:355)

The D, are numbers—it is readily seen that D, is dimensionless, bearing in mind
the normalising relation (2-331).

It is convenient to take the increasing order of the integers r to coincide with the
increasing order of magnitude of the numbers D,. Thus the complex roots come first
in the order, that is, if there are any complex roots.

We have shown that the motion of any point of a visco-elastic solid during its free
vibration can be represented as the superposition of an enumerably infinite individual
motions of two possible types: (a) a damped harmonic oscillation and (b) the super-
position of two aperiodic motions. The individual motions are of type (a) or (b),
according as D, < or > 1.

Three possibilities arise. ,

(1) All the D, are less than one. The vibration is then the superposition of an
enumerably infinite number of damped harmonic oscillations of different frequency.

3E2
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(2) Some of the D, are less than one, and some greater than one. The vibration is
the superposition of damped harmonic oscillations and aperiodic motions.

(3) All the D, are greater than one. The vibration is the superposition of an
enumerably infinite number of pairs of aperiodic motions, and is thus itself entirely
aperiodic. However, the solid is displaced from its equilibrium position and, however
it is set in motion it will not oscillate about its equilibrium position,* but the displace-
ment will die away asymptotically with the increase of time, the solid gradually sinking
back into its equilibrium position.

The criterion as to whether or not oscillatory motion is possible during the free
vibration of the solid depends on whether any D, are less than one.

We define the “ critical number” of a visco-elastic solid as Dy, the smallest of the D,
where D, is given by the formule (2-355) and (2-353). We have thus proved the
following theorem.

Tueorem II1.—If the  critical number” of a visco-elastic solid s greater than one,
then no oscillatory motion s possible during its free vibration.

By its definition, the value of the critical number for a solid depends on the values of
the elastic coefficients c,g,., the viscous coefficients ., and the solutions ¢3@
and ¢,7® (« = 1,2, 3) of the differential equations (2-322) subject to the surface
conditions (2-323). These solutions will depend, in general, on the relative dimensions
(shape) and the absolute dimensions (size) of the solid, as well as on the elastic and
viscous coefficients. Thus the value of the critical number of a visco-elastic solid
depends on its shape and size and on the values of the elastic and viscous coefficients.
It is of interest to determine the manner in which the value of the critical number
depends on these various factors.

We examine only the simple case when the solutions ¢V, ¢ M® (¢« =1, 2, 3) do
not depend on the values of the elastic and viscous coefficients—this is true for certain
simple shapes of solids, ¢f., the solutions of the problems of the vibrations of thin
cylinders in § 3.

If the viscous coefficients a,s,, are increased in the ratio k:1, then B; becomes
kB, while C, remains the same. Thus the critical number D, = B,?/4C, becomes
k?D,, being increased in the ratio of 42 : 1. Thus for solids of given shape and size and
given elastic coefficients, the less viscous solids are capable of oscillation in their free
vibration, while the more viscous ones are not capable of oscillation.

The effect of change of size on the critical number of a visco-elastic solid becomes
apparent by the use of a simple transformation. Let the linear dimensions of the
solid be increased in the ratio I:1, so that the co-ordinates of the larger solid are
expressed in terms of the co-ordinates of the smaller solid by the formulee

x,=lr, (« =1,2,3).

* The word “ oscillate >’ is used to describe a backwards and forwards motion. The word *‘ vibration ”
is used to describe any motion about an equilibrium position.
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Thus, 62’ = —ll- a—a; and ¢, = —lz enn 3 50 that the differential equations (2-322) and the

surface conditions (2-323) for the larger solid (co-ordinates «',) can be written as

° ¢ o
2 — afmn afmn
P*é. axﬁ[ B TP ]e

and

A A

Cusm Gupmn
Vg [——%éw + P "—afzﬂﬁ} € =0,

where the surface conditions now hold over the surface of the smaller solid. Thus the
critical number of a solid, whose linear dimensions are increased in the ratio ! : 1, is the
same as the critical number of the solid whose elastic and viscous coefficients are ¢,g,n/1*
and @,g,,/1?. Therefore, B, becomes B,/I* and C, becomes C,/I?; and the critical
number becomes D, /I?, being decreased in the ratio 1 : 2.

Suppose that the critical number of the given solid is D,, greater than one, say.
As the size of the solid is gradually increased, the ratio l:1 of the linear dimensions
to the linear dimensions of the given solid gradually increases, starting from the value
unity ; and the critical number gradually decreases, passing through the value unity
when | = /D,.

We call the size of a solid, such that the critical number is unity, the critical size of
a solid. :

When the size is greater than the critical size,

OF

I1>D,
so that

D, =D,/ < 1.

‘When the size is less than the critical size,

) §

I < D, so that D'y = D/I* > 1.

S

We thus have the following theorem for visco-elastic solids, whose shape is such that
the solutions ¢ M@, ¢ P of the differential equations (2-322) subject to the surface
conditions (2-323) are independent of the elastic and viscous coefficients.

TrEOREM IV.—A4 wvisco-elastic solid, of giwen material and . shape, is incapable of
oscillatory motion in its free vibration if its size is less than the critical size.

In view of the result that the critical number is increased in the ratio k2 : 1 when the
viscous coefficients are increased in the ratio k : 1, we have the following corollary.

TueoreM IV. Cor. 1.—For solids of given shape and elastic properties, the critical
size is greatest for the most viscous solids.

For a perfectly elastic solid ¢,4,, = 0, so that D; = 0; and we have the following
corollary.
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TaeoreM IV.  Cor. 2.—The critical size of a perfecily elastic solid is vanishingly small.

When the size of the solid is less than the critical size, the motion represented by
(2-351) is the elastic afterworking according to the theory of visco-elasticity. Now,
by (2-354),

W @ B 1T = B2/4C
p p e —Z — 1 :I: ]_ — I—)—- ) Whel‘e D,- == B,- /4Cw

P

When D, > 1, we have approximately

@ _ B 1|
. p®, p® = J“H: T 3D, f
Thus
pl = — 2 — %, p® = —B, approximately.

Now B, > % since D, > 1; and the numerical value of p®is much greater than

the numerical value of p. The motion represented by the least heavily damped
terms survives the longest, that is the motion represented by the p/* terms. We note
the similarity of the expression for the elastic afterworking in a visco-elastic solid to the
empirical formula for the elastic afterworking obtained by NEESEN, 2 = ce™™ 4 ¢,
(see the introduction, p. 342).

When the size of the solid is greater than the critical size the motion represented by
(2-351) is the superposition of damped harmonic oscillations and elastic afterworking
effects (aperiodic motion). The motion represented by the least heavily damped terms
again survives the longest, of whichever type these terms may be. It is not evident, in
general, whether an aperiodic term or oscillatory term has the least damping factor.

To complete the analytical solution of the problem it is necessary to make the general
solution (2-351), namely

i . 1 (9 2
w, = = {10 R - M,4,0® PR )z}’ (« = 1,2, 3)
r=1

satisty given initial conditions of displacement and velocity for every point of the solid
by a suitable choice of the constants L, and M,. The initial conditions are

()imo = S (L0 £ M), (u—=1,2,8), . . . . . (2-361)
r=1 . .

and

|

(%%) = % -{L,.p,(l)(ﬁa(r)(l)+}Irpr(2)¢u(r)(2)}(, (oc =1,2, 3) I (2’362)
=0 r=1 { j

T havebeen unable to obtain any orthogonal relations between ¢, ®, .0 (« = 1,2, 3)
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and ¢,OW ¢ O (o =1, 2, 3) where r # s, except in the special case when there is a
relation between the elastic and viscous coefficients of the form*

Gopmn = TCupmm, (7 @ constant).

2-4. Some properties of the free vibrations of a visco-elastic solid for whicht @.pmm = TCopmn

If @ ppn = TC.gmm> the differential equations (2-322) reduce to

Py =D : 2-411
P 1 ,+_ *Tp ¢’a axﬁ Caﬁnm Cnn s ( )
and the surface conditions (2-322) can be written (dividing by 1 4 =p) as
ViCoprm O = 0.+« . .. ... (2-412)

Now p only occurs as p?/[1 -+ =p] in the differential equations (2-411), so that the
solutions (2-324) for ¢, in terms of p can contain p only as p*/[1 + =p], i.e.,

b= %o (1, Ty 3, P¥/[1 4+ 7p]), (e=1,2,3). . . . . . (2:413)

Indeed, since the surface conditions are the same as for a perfectly elastic solid,
the analysis of the problem is the same as in the case of a perfectly elastic solid except
so far as p?/[1 4 =p] replaces} p2.

* This is similar to corresponding results in the theory of a dissipative mechanical system. We have
already noticed the analogy between B and the dissipation function in a mechanical system, and between
C and the potential energy function for a mechanical system (see footnote, p. 377). The particular case
when Gugmn = TCopmn (30 that B = ¢C) evidently corresponds to the case when the quadratic expressions
for the dissipation function and for the potential energy function can be reduced to the sum of squares
simultaneously with the expression for the kinetic emergy in a mechanical system. Now, unless the
dissipation function and the potential energy simultaneously reduce to the sum of squares, in any normal
vibration of the system there is a small vibration in ¢, g5, . . . gy, besides the vibration in ¢,. Thus the
initial conditions are, in general, 2 linear equations for L, and M, (r =1, 2, . . . n), every L, and M,
appearing in every equation. But in the case when the dissipation function and the potential energy
function simultaneously reduce to the sum of squares, there is a vibration only in ¢, in a typical normal
vibration of the system ; and the initial conditions reduce to the form

(@) =L, + M, and (§,) = p,VL, + p,>M,.

These simple initial conditions are analogous to the simple formulse for calculating L,, M, from the initial
conditions when there is an orthogonal relation between d.HD and ¢, D). (For these results con-
cerning a dissipative mechanical system, see, for instance, Lams’s “ Higher Mechanics,” p. 233, or
WHITTAKER’S *“ Analytical Dynamics,” p. 233.)

T The constant T should not be confused with the element of volume dr.

i The relation dugun = TC.pmys for an @olotropic solid reduces to the relation A’ /A =u’/y for an isotropic
solid. We have here a general explanation of why Srzawa found the problem of the propagation of
surface waves in a visco-elastic medium to be soluble, only by making this assumption. See Smzawa
< Bull. Earthg. Res. Inst. Tokyo Univ.’ vol. 3, p. 43 (1927). See the introduction, p. 350.
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But (by Theorem II), p, and p,* are the roots of equation (2-348), namely,
Ap*+Bp+C =0

in which A, = 1, and B, and C, are positive and real.
Since @oemy == TCoomny By = 7C,; and we have

(1)2 (2)2
r

= —(C=—"— . . .. ... 2-421
e~ (2-421)

Thus the functions ¢, corresponding to the two roots p,” and p,'”, and given by
(2-413), are the same ; that is,

$ M =9 =0 L (2-422)

The most general solution for the displacement components, given by (2-351), now
becomes

u, = = ¢ {Lerr 4+ Mer ", (0 =1,2,3). . . . . (2-431)
r=1
The initial conditions (2-361) and (2-362) become

Wino = = ¢ O[L+M], (x=1,2,3). . .. ... (2-441)
r=1

and

(%), = E 40MLpY +MpPL @=12,3). . . . (2442)
ot /i =0 r=1
The normalising relation (2-331) becomes simply

m b PdOdr =1. . .. ... ... (2-443)

vde

From (2-347) we see that p,), p,"’ are the roots of an equation

oA, s) +pB(r,s)+C(r,5) =0 (fr#s),

where

-~

Ar,s) = Hj 06 ¢ dr; B(r.s) = \Fﬁaagn,n " €us” d 7

~

C(r, s) = j” Copmn " €,8" d.

But the set of functions ¢,” correspond to both roots p,* and p,””. Thus p,® and
p." are also roots of the same equation ; and we have

[pf(l) + p"‘(l)] A (Ta 3) = —B (’l’, S),
[p® + p"TA(r,5) = — B(r, 9).

and


http://rsta.royalsocietypublishing.org/

A A

j A Y

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

' \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

J. H. C. THOMPSON ON THE THEORY OF VISCO-ELASTICITY. 387

By subtraction

[pY — p®]A (r,5) = 0.
Since p,"V % p,?,

A(r,s) = m ed P dDdr =0, ifrz£s. . . ... (2-444)

If r = s, A (r, s) = 1, by the normalising relation (2-443).

The constants L,, M, can now be determined from the initial conditions (2-441) and
(2-442) by the use of the orthogonal property (2-444). Multiplying (2-441) by ¢,”
(and summing over all values of «, of course) and integrating throughout the volume of
the solid, we obtain

mp WUde o b0 de = §_°1(L,+M,)A(¢, §) =L+ M. .. (2-445)
Similarly from (2-442) we obtain

j J j o (%;-) e =é (POLA pOM)A (1, ) = pOL,+ pO M., (2:446)

The constants L, and M, (s any positive integer) are immediately calculable.

In this special case (Where @,gm, = TCumn) it 1s possible to examine the character
of the motion represented by the general solution (2-431) in greater detail.
From (2-355) we have D, = B,%/4C,.
But
B,=+C, sothat D, =%<B,. . . . . .. .. (2-451)

Now D, are arranged in increasing order of magnitude by definition; so that B,
also form a sequence of increasing magnitude.

The roots p,, p,® of the frequency equation are given by (2-354), which becomes
in this case

i
O, p® = %Br{— 1+ [1 —-;;48_] } ...... (2-452)

Thus the damping factor of the oscillatory terms is e"#*#; and the least heavily
damped pair of oscillatory terms is the first pair, whose damping factor is e~ *"*.

When $+B, = D, > 1, the roots p,", p,® are real and the corresponding terms in
the general solution represent aperiodic motions.

When D, is just greater than one

p Y, p® = — iB, = — 2/7 approximately, since }*B, = 1 approximately.

When D, > 1,
pY = —1/%, p® = — B, approximately.

VOL. CCXXXT—A. 3rF
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Thus the least heavily damped of the aperiodic terms are the late p," terms, which
have the approximately constant damping factor* e~

Now the least powerful damping factor of the oscillatory terms is e~

Since D; = }1B,, it follows that if

D, > %, then $B, > 1/7;
and if
: D, <%, theniB, <1/r.

We have already seen that the character of the motion in the free vibration depends
on whether the critical number of the solid is greater or less than one (see Theorem III,
p. 382) in the general case when no relation holds between the elastic and viscous
coefficients. In the special case when a4, = 7C.emm, We see that there is an additional
criterion as to whether the critical number of the solid is greater or less than 4. We have
the following theorem.

TaroreM V.—If in a visco-elastic solid the elastic and viscous coeffictents are connected
by a relation @.pmm = TComns then the motion in the free vibration of the solid which has
the least powerful damping factor (and appears to survive the longest) is damped oscillatory
or aperiodic (elastic afterworking) according as the critical number is less than or greater
than i. ‘

The results obtained in this section hold good for the torsional vibrations of thin
isotropic visco-elastic cylinders, even when the relation 2’/x = '/, which is the special
form of the relation @,gu, = 7C.m. for an isotropic solid, is not satisfied. For only
the elastic coefficient p (the rigidity) and the viscous coefficient u’ (coefficient of
tangential viscosity) occur in the solution ; and we have the relation B, = <,C, (where
7o = p'/u), from which the results of this section (2-4) follow.

2:5. The problem of the “ free” vibrations of & visco-elastic solid, a portion of whose

surface is fixed.

When a solid is allowed to vibrate with a portion of its surface fixed but the remainder
of its surface free from traction, its vibrations are free in the sense that no work is done
by externally applied forces during its vibration. Such vibrations have all the properties
of true free vibrations which were deduced in the preceding sections (2-3) and (2-4).

The solution of the problem will, of course, be different ; for though the differential
equations (2-311) remain the same, the surface conditions (2-312) hold only over the
free portion of the surface, being replaced by the surface conditions

$o=0, (@=1,23), . . . ... .... (2.51)

* The existence of this constant damping factor was noticed by O. E. MEYER in the case of the torsional
vibrations of a thin cylinder—see MEYER, ‘Pogg. Ann.’ vol. 151, p. 108 (1874). Its existence in the
approximate solution of the problem of the longitudinal vibrations of a thin cylinder was pointed out to me
by Professor MiLyz. ’
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over the fixed portion of the surface. Now, all the results of the two preceding sections
were obtained from the transformation of the volume integral (2-344). This trans-
formation can be carried out in just the same way as before.

For the surface integral

j[vﬁ (caﬂmn + plc a'aﬁmn) 3mn(k) ¢a(l) dS

vanishes now, not because
k
Vg (caﬂmn + Pr a’aﬂmn) emn( ) == 0

over the whole surface, but because this surface condition holds for the free portion of

the surface and
40 =0

over the fixed portion of the surface.

§3. Tue Vierations oF THIN IsoTRoPiC Visco-ELASTIC CYLINDERS.
3-1. Notation.

The solution of problems concerning the vibration of a visco-elastic solid of particular
shape is found to depend on some unsymmetrical feature of the shape. It is convenient
therefore to drop the dummy suffixes and the summation convention of the tensor
notation used in § 1 and § 2.

The directions of the axes are denoted by suffixes z, ¢, z. The displacement com-
ponents w, (« = 1,2, 3) are denoted by u, v, w. The equations of motion (1-72)
become

oy apg; 0 yz 0 2
GU _ OPar | CPur g P oo ... ... .
ot? ox oy I (3-11)

The stress-strain relations (1-91) for an isotropic visco-elastic solid become

Duw = <7\ + )\'-g—t> A + 2pe,, ete. ;
and
Ppe = Py = 2<p, + ;L'éaz) enete. ... ... (3-12)

The formula (1-22) for the strain components becomes

— % ote — (o 99) :
€ = > etc.;  e,= g<ay -+ %) etc. . . . . .. (3-13)
In the above equations, p, A, u, A, p” are constants.
We remark that a problem concerning a visco-elastic solid differs only from the
same problem concerning a perfectly elastic solid in that the Lamk elastic constants

A, u are replaced by the operators

2 2

3 F 2
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It is often more convenient to introduce the viscous coefficients by means of the
constants v, and ,, defined by

~

(3+14)

frz_)\_, To ==
1 A 2

= |F
-

We call =, and =, the visco-elastic constants of an isotropic solid. They are of the
dimensions of a time, and their significance will appear later.

3-2.  The free torsional vibrations of an isotropic visco-elastic circular cylinder.

Thete is a solution of the equations of motion in which the torsional displacement
at time ¢ is given by

= —y0 (2, 1), v=20(z21), w=0,

the axis of z being taken as the axis of the rod.
Hence
Pee = Pyy = Pre = Puy = 0;

<+ >ae < ,a>ae
p;l/ (“' ’ pz:c”“‘ y p“y‘at az

The third of the equations of motion (3-11) is thus satisfied identically, and the first
and second equations of motion become

and

20 020
K—I— >8z2_ °ae
or
20 020 .
<1+Tzat)82 S e (320)

where 7, = p'/p and ¢,2 = p/p. ’
The components of traction across the curved surface #* + y? = a2, vanish. For
P, = puw=vp. + VP + VP, =0, sincev,=p,=p,=0;
P, =p, = v.p, + vp, + v.p, =0, sincev,=p,=p, =0;
Pz = pvz = vzpl‘z + vypjz + z_’pzz
00 . v,

— _ A
= (zv, yv)(u—{—p. >6z 0, Slnc‘e v, g

Now 0 (z, 1) = Ae" e” is a solution of equation (3-21) if p is a root of
eI+ 1p)=0 . .. .... ... (3-22)
Since y occurs only as y2 in (3-22), | |

0 (2,t) = Be ™ ¢
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is also a solution. Thus, changing the constants, we find that
6 (2,t) = (A cos vz ++ B sinyz) (Le”(l)‘ + Me”(z)‘) e e (3-23)

is a solution, where p®, p® are roots of (3-22).

We consider two cases : (a) the cylinder free at both ends, z =0 and z =1; (b) the
cylinder fixed at z = 0 and free at z = L.

(@) It is found that the = and y components of tractlon vanish over the ends z =0
and z =1 in the same way that they vanished over the curved surface. The condition
that the z component of traction (equal to p,.) should vanish at 2 =0 and z =l is

. B=0, and sinyl=0,
2.6.,

B=0, and y= 1—? (raninteger). . . . . . . . (3-241)
Thus the solution (3+23) becomes
0 (2, t) = cos Tl‘-z (Lo + M, e, . .. ... - (3-242)

where p,", p,® are roots of

027'712

e (1—{-7210)——0....'..,... (3-243)
This equation for p,, p,® is the special case of the equation (2-348) which occurred
in the general theory, namely,

A,p® 4+ Bp + C, =0, in which A, = 1.

The critical number for the torsional vibrations of a circular cylinder free at both
ends is the smallest of the
B2 c?r*nq?
PG =T
i.e. oy, , the value when r = 1.
T4l ;

Thus the critical number for the free torsional vibrations of a rod of length 1 is
greater or less than one according as the length [ is less than or greater than drzyc, = I,
say. :
If 1 <1y, the equation (3-243) can not have complex roots for any value of the
integer 7, and no oscillatory motion is possible.

If I > 1,, the equation (3-243) will have complex roots for a finite number of values
of the integer. Free torsional vibrations will be the superposition of damped harmonic
oscillations and aperiodic motions.

The length I, is the critical length of the cylinder for free torsional vibration.
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By building up a general solution from (3:242) to obtain

0 (2, 8) = z cos T (L, en o M, en™), . . . . .. (3-244)

T
it is possible to satisfy given initial eondltlons for the torsion and rate of torsion, of

the form
0(2,t)=¢(2), for 0<z<l when ¢t=0,

é%G(z, t)=14 (2), for 0 <z<!l when t=0.
By suitable definition outside the interval 0 < z < I, the functions ¢ (z) and ¢ (z)

can be expanded in Fourier Series of the form

bR =Zacos T, ¢ () =2 pcos;
so that the initial conditions are satisfied if
Lr + Mr = &,
and
pOL 4+ pPM,=8. . . . . ... . (3-245)

The set of functions ¢,” (x = 1, 2, 3) which corresponded to the roots p,, p,® in
§ (2-4) are, in this example
T2

l,O.

— ¥ cos 71;-? , & CO8
The orthogonal relation (2:444) is, in this example, the well-known orthogonal
relation between the terms of a Fourier Series.
‘When D, > 1, the roots p,V, p® of equation (3-243) are

202, 2n 2222 3
72 Cot'Tt [ To2C272m
P, P = — §7y czr + 3 21 {2 212 _4}

and become approximately

1
pM = ——=, p® = — 1c,2*n%?, when D,> L.

To

When D, < 1, p,@, p,” are given by

W @ 1. G 0T { _ zgerintlt
PP = %72 B ’ 4+ 7 1 e
and become approximately
PO, PO = — hrgotr®n?/lt 4§ 2T 02”’“ when D, <1
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The least powerful damping factor of the oscillatory terms is thus the damping factor
of the first term, namely, Tt The least powerful damping factor of the
aperioziic terms is the approximately constant damping factor ¢"~ of the late p,"
terms. Thus a damped oscillatory motion or an aperiodic motion (elastic afterworking)

appears to survive the longest according as

1.

27 l 2
7.6., a8
C "C T
D, = '24l22 < or >}
or the criterion can be written as ‘
I>or < V2l o v v (3-246)

where [, is the critical length.

When 1> 1,, so that the critical number D, <1, the damped oscillatory motion
represented by the first pair of terms appears to survive the longest, and after some
time—during which the more heavily damped terms die down, and the observed
damping is large—the angle of twist of the cylinder is represented approximately by

0 (2,t) = eosT—;E o t{ocl 00502___7: t 4 [Slﬂ + % Tzcm ]Sim%it t}. .. (3-247)
2

To this order of approximation the viscosity of the cylinder does not affect the period
of vibration

2n 2l
T = Tl T e (3-248)
but retards the phase by a time
i seconds. . . . . .. . .. (3-249)

21+ ()
%, CoTe
(b) The cylinder is fixed at z = 0 and free at z = [.

The solution (3-23) for 6 (z, ¢) satisfies the end conditions if A = 0 and cos yl =0

7.e., if
2r — 1
2l

A=o0andy = = (raninteger) . . . . . . (3-251)

Thus the solution (3-23) becomes

0 (z,t)=sin2¢2—l“ lnz(L,ePr

where p,!, p,2 are roots of

(2r — 1)2n?

p2_|_02 1 T+ mp)=0 . ... ... © (3-253)
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Equation (3-253) is the particular form of the equation A,p® + B,p + C,=0,
occurring in the general theory. ,
The critical number for the ““ free ” torsional vibrations of a circular cylinder, fixed
at one end, is the smallest of the
D — 20,2 (2r — 1)? w?
’ 1672 ’

20,2 n?
161 ’
Thus the critical number is less than or greater than one according as the length of

t.e., the value then 7 =1.

the cylindei' is greater or less than [,/ = fﬁ? . The length l," is the critical length

of a circular cylinder for its * free >’ vibration when it is fixed at one end. This critical
length is one half the critical length for the free torsional vibration with both ends free.

Results follow now in exactly the same way as in the preceding example when both
ends were free. The constants I,, M, are again determined by the satisfying of the
initial conditions. It is necessary, in this case, to expand the functions #(z) and {(z),
which define the initial torsion and rate of torsion, in Fourier series of the form
(2r — 1) nz

21

Z «, sin ; which is possible by suitable definition outside the interval

0<z <.

3:8. The free torsional vibrations of & thin isotropic visco-elastic non-circular cylinder.

The solution of the problem for a circular cylinder breaks down in the case of a non-
circular cylinder because the z-component of traction across the curved surface does not
vanish. Now a visco-elastic solid behaves as a perfectly elastic solid when in equilibrium.
A solution of the equilibrium problem, due to SAINT-VENANT,* shows that there is an

axial displacement given by

_ o6
W = ‘é‘é‘ﬁ (x) y)’

where 3—2 is the twist and is constant; and the function ¢ (z, ) is a plane harmonic

function, determined by the fact that
—L (@ +y ) = constant
over the curved surface of the cylinder, where q: is the function which is conjugate to ¢.

The torsional couple is cd -5;, where

C= (:.H(ﬁ—}—@/ +x———- _.,,/515\) dx dy

and is called the torsional rigidity.
* See Lovg, “ Elasticity,” Chap. 14.
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To obtain a solution of the vibration problem, it is necessary to make a certain
assumption—the same assumption that is made in the solution of the vibrational
problem for a perfectly elastic cylinder.* The assumption is that the strain in a thin
portion of the cylinder lying between two neighbouring cross sections is the same as
if the thin portion were in equilibrium with the instantaneous twist. In the case of
a perfectly elastic cylinder this assumption involves only neglecting the effects of the
kinetic reactions on the strain distribution within the thin portion. In the case of
a visco-elastic cylinder viscous stresses are called into play when the cylinder is vibrating ;
and it might be.expected that we are also neglecting the effects of the viscous stresses
on the strain distribution in the thin portion of the cylinder. But this is not the case
for torsional vibrations, though it is for bending and longitudinal vibrations. For the
statical problem of strain distribution in a twisted cylinder is purely geometrical, e.g., the
determination of ¢ (z, y). In effect, the viscous forces merely increase the value of the
elastic stresses in the case of torsion, and do not affect the strain distribution in the
thin portion of the cylinder that we are considering.

Making this assumption, we have the torsional couple equal to

C<1+¢2%\>—2—2, where*rz:%, c e e o .. (8-31)

as the elastic constant w is replaced by the operator p -+ p’ gi when the cylinder is

vibrating.

The equation of motion is formed by considering the motion of a thin cross-section
of the cylinder lying between the z and #z + dz cross-sections in the standard configura-
tion ; and is

c20 / 0\ 026
2 — —_— —— ¢
P w K_ '5t—2 = C (\1 + Ta at) azz Py . e e (3 32)

where o is the cross-sectional area, and K is the radius of gyration of the cross-section
about the centroid. The equation of motion can be written as

026 ,2< Q\ 020 B
= 1+Tgat)w, e e e e o ... (3-33)
where
, C
022_—9_-(;—]2—2' (3'34)

This is of the same form as the equation of motion (3-21) for a circular cylinder,
¢, replacing c,.

The solution of the problem of the torsional vibrations of a non-circular cylinder
now follows in exactly the same way as for a circular cylinder.

* Love, “Elasticity ”* p. 427, where this assumption is discussed for the case of a perfectly elastic
eylinder.

VOL. CCXXXI.—A. 3G
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3-4. The free longitudinal vibrations of a thin isotropic visco-elastic cylinder.
When an elastic cylinder is in state of longitudinal tension the strain is such that
6.':;1' - eg/y = Gezz:

__i_____
2(n 4+ w)’

Thus the determination of the strain distribution is not simply a geometrical problem
as in the case of torsion but depends on the relative magnitudes of the LamE elastic
constants A, u. QUIMBY* has made the assumption that e, = e, = — ce,, in his
analysis of the problem of the longitudinal vibrations of thin visco-elastic cylinders.
This is the equivalent assumption to the one that we made in § 3-3 for torsional vibra-
tions. But in the case of longitudinal vibrations it is wrong because the viscous stresses
seriously modify the strain distribution. For if the displacement components are
proportional to e say, then the effect of the viscous stresses on the analysis is to
increase the values of 2, ¢ to »+ A'p, w4+ u'p. Thus, unless 2"/x == p'/p, the
viscous stresses affect the strain distribution determined by PoissoN’s ratio, and
QuiMBY’s assumption leads to inaccurate results. Indeed, it is readily seen that, unless
A/x = u//u, the traction over the curved surface will not vanish.

An approximate solution of the problem can, however, be obtained without difficulty.

We look for a solution in which e, =e, =¢, =0; and p, =p, =0. There
will thus be no traction over the curved surface. We have

where o, PoissoN’s ratio, is given by ¢ =

0=pxm=<7\+7\—>A—l~2<P~ W Lle.
0=p,= ( 4+ a> P-/g‘i\/\ €y
=t §>A+2<u+v~—‘>6n-

Eliminating e,,, ¢,, from these equations, we obtain

lovw+ortwdhp=(atvi){er+2m+ o022 e

The equation of motion
Op 2y 0])02 Upzo — 8210
+ + e
becomes

<.v«+u'é%>{(3%+29)+(37\’+2u')§—t}%2§0 {0t 00 ) S e

* < Phys. Rev.,” vol. 25, p. 539 (1925). See introduction, p. 343.
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The solution is only approximate as the other two equations of motion are not satisfied
unless the cylinder is vanishingly thin—as is the case in the well-known solution of the
same problem in the case of a perfectly elastic cylinder. The solution is most accurate
for the graver modes of vibration, as the other two equations of motion are most
nearly satisfied for the graver modes.

There is a solution of the equation of motion (3-41) of the form w = Ae™e?, if*

2 1o (4 u'p) {BX+2p) + (BN 4-2p)) p} _ )
I S Nhy iy g ¥ 0-e . (3042)

Now vy occurs only as y? in this equation, so that w = pe~"%" is also a solution.

Thus
w = (A cos yz + B sin yz) e

18 a solution. Suppose that the cylinder is free at both ends. Then we must have

B=0 and vy = %—t ,
in order that p,, =0 atz=0and z = [.
Now equation (3-42) is a cubic equation for p in terms of y. Let the roots be
T
T
Thus we can build up the general solution

1 2 3
2, p®, p» when y =

. T2 &) @) , (3)
w = ? sin. = (L, e "+ M, e "+ N, e ).

Now it is not possible to determine all the constants L,, M,, N, by satisfying the initial
conditions of displacement and velocity, and the solution is indeterminate. This
appears to be a contradiction to theorem I (p. 370), concerning the uniqueness of solution.
It seems that this is due to the fact that the solution is only approximate. We proceed
to show that one of the roots is always large, provided that p/u" and 2/1’ are large
(experiments on the damping of the vibrations of a torsional pendulum suggest a value
of about 10 sec™*1), while the other two roots may be small if the value of y is sufficiently
small.
We write the relation (3-42) as ;

F(p) = p[(r + 1)+ (A + u) 7] +l§[<p. - w PHBH + 20) + (3) -+ 20) p}] = 0.

* The same p — v relation is obtained when the problem is investigated for a circular cylinder on the
sane lines as on p. 289 in Love’s “ Elasticity ” for a perfectly elastic circular cylinder. This solution
also is only approximate as there is a surface traction over the ends ; and the approximation is again best »
for the graver modes. This comparison is a partial justification of the solution given above.

1 Cf., for example, Hoxpa and Koxwo, ¢ Phil. Mag.,” vol. 42, p. 115 (1921). See also introduction.

36 2
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Putting p = — &, we have
® }y ,
(- )=
‘ // {J,,/ (J,l
. 3% -+ 2u
Putting p = — ———, we have
S O

F(—— 3n -+ 2 =<3)\—{—2y,\27\'y,——7\pn'
37\'—{—-2@') 3\ - 2p’/ 3\ 4 2u'

' nd 33" 4 2p’ . e _ ﬂi%.&)
Now p' > 0 and 82" +2p" > 0 by (1 93), so that F( V-'> and F( 3 2y
have opposite signs.

Hence there must be a root lying between — :%,and — :;’?1)\)‘,—1:—%% , which is real and
negative since, by (1-92), w > 0 and 31 + 2p > 0. _

In view of the fact that the solution gives the best approximation for the graver
modes of x'ribra,tion, it seems that the third root lying between — 5—, and — ?f)’—)\))——l:—;—:—,
is an extraneous solution.

When the roots p®, p® are small they are approximately the roots of the quadratic

epP+vEQ+p)=0, ... .. ... .. (3-43)

where E is Youne’s modulus, and

Q52 2 'Y 4
T = Apry + (32 +4M”+2“)T2, where 7, =2, 7, =%

(2 + w) B2 +2p) A p

We call « the ““ normal visco-elastic constant.”
If the motion is so slow that the viscous stresses are small compared with the elastic
stresses, the equation of motion (3-41) becomes approximately

Pw < 0\ 02w 5
— —_— ) —— K == S e e s e e ‘44
T 147 8t> 5F where ¢ =E/p; (3-44)

and the tension p,, is given approximately by*

pzz_—_E(1+»c-a%>g—Z”. e e e . (3-45)

\

It is not possible to discuss phenomena concerning the critical number and elastic
afterworking by means of this solution, even by keeping the more exact form of the

* The quantity B’ = Bt has been called the * coefficient of normal viscosity ” by Hoxpa and Konno
(loc. cit.).
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equation of motion (3-41). For when there is no oscillatory motion, the viscous stresses
must be so large as to outweigh the elastic stresses. Thus, p must be of the order of

— Y and — -)-\7% , and this is the same order of magnitude as that of the third root of the

equation (3-42) which we have already discarded as an extraneous solution on account
of its magnitude. '

The equation of motion (8-21) for the torsional vibrations of a circular visco-elastic
cylinder, (3-33) for a non-circular cylinder, and the approximate equation of motion
(3-44) for the slow longitudinal vibrations of thin rods, are all of the same form
as the equation for the propagation of sound waves in a viscous medium, obtained by
STORES.*

For slow longitudinal vibrations of thin cylinders we obtain results from the approxi-
mate equation (3-44) which are similar to the results obtained in §3-2 for the free
torsional vibrations of a circular cylinder.

The forced torsional motion of a visco-elastic cylinder.

3-5. The torsion of an isotropic visco-elastic cylinder at constant angular velocity.

For simplicity the cylinder is supposed to be circular, though from the results obtained
in § 3-3, it is clear that the analysis would hold equally well for a non-circular cylinder.
The equation of motion is (3-21), namely,

220 9 920

— = 2 - T 4 s s s a2 e e & s s e ¢
or <1 T (8:51)
where 0 (2, t) is the angle through which the section z is turned at time .
The fixed end condition of the end z = 0 is
0 (z,8) =0, atz=0forallz. . . ... ... (3-521)

The lower end (z = 1) is constrained to move with constant angular velocity ; and
initially the cylinder is supposed to be in equilibrium in an unstrained position.
Thus ~

0(2,t)=ot, atz=10. . . . ... ... (3-522)
The initial conditions are
0(2,0) =0, when {=0 and 0=<z=<I ... .. (3-523)
and
iQ(z,t):--O, when t=0 and 0=<z<Il . ... (3-524)

ot

* See Ravirieu, ¢ Theory of Sound,” vol. 2, p. 283.
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There is a solution of (3-51),
0 (2, 1) = ay + 12 + ast + ag2t,
but @y = ¢, = a, = 0 in order to satisfy (3-521) and (3-523).

The solution

0 (2, 1) = siny,2 [e" * — e,

where p, ", p,® are roots of

Pty (14 1y p) =0,

also satisfies (3+521) and (3-523).
We build up the more general solution

0 (2, 1) = agzt + = C, siny,z (et — e %),
7

which also satisfies (3-521) and (3:523). Conditions (3-522) and (3-524) remain to be
satisfied.
Condition (3-522) is satisfied if

as = o/l and vy, =rn/l
Thus the solution becomes

0(2,1) = o 7 + >3 C, sin f’l‘?(en’ O _ gr, Py .

and condition (3-524) is satisfied if -

——z—}—LO sin 2% (p‘” =0 for 0=s2z<l

But
Zt—%l——sin@rz-— 1% for 0=z<l.
Thus
W peno - 20 (—1)
[}7:- pr ]Cr_" 7 ]

where p,, p,® are the roots of
+02’ ™ (1 - =,p) = O,

Thus the solution for 6 (z, t) is

‘ —1) . 2, Ve __ p @
9(z,t)=m§t+z?fs( 1) g T2 € ¢

A I 50— .. (3-53)

Now the couple which it is necessary to apply at the end z = I to produce this motion is

L—O<1+T28t)g_g at z=1,

where C is the torsional rigidity (C = watp/2 for a circular section).
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Thus | , © )
) B e T | O
where ,
O, p® = — %12022 Zzl_gi + @%{f&%)i— 117¥ .. .. (3-55)

The series of terms of damped harmonics and aperiodic damping factors is not of any
particular interest, as it is noticed that no term can be large compared with the rest.
On account of the fact that all the terms are damped it is continuous.

If I < v,c,m/2, there are no damped harmonics and the torsional couple expressed
by this series dies away aperiodically. If I > 7,c,m/2, the torsional couple represented
by this series will change sign before it dies away. a

As time passes the torsional couple will be more and more accurately represented by

A A

SOCIETY

L—_—C%(ur To)e e e e e (3-56)

Now in the case of a perfectly elastic cylinder, the expression for L becomes (putting
T =0)

OF

2w . CofT

L=0{Ft+2"s -2—-} ........ 3-57

C{get s sny (8-57)

The terms in this series are now simple harmonic terms and do not die away. Further,
the sum of these terms is discontinuous. We have

1 . corr CoT
Sosin 28t =11 @92n — 1) — 2 ]
% sin =5 l 2[(1@ )™ i

when
CyTl

l

The series terms which occur in the solution for 6 (z,t) at any point of the cylinder
represent a torsional vibration of the cylinder due to the sudden start, when the motion
of the end point is given by

L (» an integer).
C:

2nw > >2(n——l)n;i.e.,2n0£>l>2(n—l)
2

)

y
S

o) =0 (=]

and every other point of the cylinder is stationary.

The effect of the viscosity of the cylinder on the torsional couple required to produce
the motion is :—

(1) The value of the torsional couple varies continuously with the time. The effect
of the viscosity is to smooth out the discontinuity which occurs if the rod is elastic.

(2) When the vibration of the cylinder due to the discontinuous start has died down,
the torsional couple L is C(w/l) v, more than would be required to maintain the
cylinder in equilibrium in the instantaneous position. The value of the torsional couple
has to anticipate the torsional displacement by a time of =, seconds.

SOCIETY

OF
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In the figs. 2 and 3 the torsional couple is plotted against the torsional displacement
of the lower end. The dotted line gives the torsional couple necessary to keep the
cylinder twisted and in equilibrium at the instantaneous displacements.

/
s

N

1

N , ,

I

’
Co, / /

r 7 /

v/ /

e . /

!
_-._w-rz.._-->y /
>

A

A A

Torsional couple [L]
N

N
N
Torsional couple [L]
AN

OF
N

Torsional displacement [6(0)-wt] Torsional displacement [0 (,,0)=wt]

Fie. 1.—Visco-elastic cylinder. Fic. 2.—Perfectly elastic cylinder.

The graph for the visco-elastic cylinder has been drawn on the supposition that its
length is less than }r,c,m. If the length of the cylinder is greater than }t4c,m, then
the graph will start in a manner such as fig. 3.

) ¢

A \

/4
y

Torsional couple [L]

Torsional displacement [6 ()]
Fie. 3.

3:6. The torsion of an wsotropic visco-elastic cylinder by a torsional couple increasing
linearly with the time (L = Kt).

The equation of motion (3-51), the fixed end condition (3-521), and the condition
of no initial displacement (3:523) are the same as in the last example in § 3-5.

OF
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The solution
0 (2,1) =X sinyz (C, e * + D, ™)

satisfies the fixed end condition.

The solution
0 (2,0) = ay2 + ag2t

satisfies the fixed end condition ; and we build up the more general solution
0 (2,t) = a2 + as2t + Z siny,z (C, . et + D, e”rm‘)

which also satisfies the fixed end condition.
The condition of the forced motion at the end z = [l is

— T — AL —1. .
Kt—L_C(l—}—-rgat)azatz—-—l, ...... (3-61)
that is

(2N

Kt + C {(a; + @75) + Gat + v, cos v, L[(1 + 74p,0) C, e + (1 + 1,p,®) D, &'},
This is satisfied if

a; =K/C, a, = — Kg—“’- ; and cosy,l =0, t.e., vy, = (27”;____7_1_)_7_‘
The initial conditions
6(2,t)=0,whent=0,for0<=2=<1 ... ... (3-621)
and
-g-tﬂ(z,t)=0, whent=0,for0 <z=<1[l ... ... (3-622)

remain to be satisfied.
The initial conditions reduce to

—-—%-r,z —{—23(0, +D,)sin(—2r;2l—ll-7—t-z=0, for0 =z=<1;
and
I—éz + 2 (pC, + p2PD,)sin @r—gi}-)fgr— 0,for0 =z =<1

But ‘ ¢ . ,

__8l — 1y . (2r—1)nz _

= n“‘% or— 1 sin 5 when — 21 < 2z < 2l.
Thus the initial conditions are satisfied if

C, + Dr — K T 8l ("— 1)"1

C *m(2r—1)p

VOL. CCXXXI.—A. 3 H
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and
o KSl (— 1yt
&) @) _ \— 1) -
»C, + p,D, = O @r— )2,

where p,, p,® are the roots of
—_— 2
P+ [@2—11—)2} ¢’ (1 + 72p) = 0.
The solution for 6 (2, ¢) is thus

0 (2, t) = %z (¢ — 7a) +Zsin (2"‘;___51)_’% [C,ex D, e, . . ... (3+63)
where -
G — K8 (=1 1+ 5p®
r (}'nz(Q,,. 12 pd —p®’
and K 80— 1y 14 W [ (3-64)
. —_ r— Ty
D,=+5 Cm@r—1pp® 1;(2)

Again the series terms are not of particular interest, as the motion they represent is
damped, and it is easily seen to be continuous on account of the exponential damping
factors which occur with each term. As time passes the motion of the end z =1 is
more and more accurately represented by

0 (8=

THE=m) e (3+65)

If the cylinder is perfectly elastic, v, = 0, and we have

e(l’t)szt—l—GlEI_{_Z 1 sin(Z’I’—l) TCyt

C” 7 e, O (@r—1y 2l (3-66)

The terms in the series are not damped but the motion they represent is continuous.

When ¢ < 2l/c

p %,
P @r—1p ol 16l3 boy

The effect of the viscosity of the cylinder on the torsional displacement at the end
z = | due to the torsional couple, L = K, is:— - |

(1) While in the case of a perfectly elastic cylinder there will be a vibration about
the steady motion owing to the manner of starting, in the case of a visco-elastic cylinder
this vibration will subside, leaving only the steady motion.

(2) When the vibratory motion has subsided the steady motion is expressed by
0 (l,t) = (K/C)I(t — 7»), which is the equilibrium torsional displacement due to a
torsional couple K (f — 7,). The torsional dlsplacement thus lags behind the torsional
couple by a time of =, seconds.
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8-7. The hysteresis loop for the torsion of an isotropic visco-elastic cylinder.

We can plot the torsional displacement of the lower end of the cylinder against the
torsional couple applied to that end during a cycle of changes. The results of either
§3-5 or §3-6 can be used. We use the results of § 3-6 for twisting by a torsional
couple L = K.

The solution (3-63) holds just the same if K is negative. Further if the cylinder is
initially twisted so that

0 (2,t) = Az when =0,

the solution is obtained by adding Az to the value for 6 (2, t) expressed by (3-63).

We take the cylinder through the following cycle of changes.

(1) The cylinder is initially twisted by a constant couple L = KT. A couple of
magnitude L = K (T — ¢) is then applied for a time 2T when the value of the couple
has become L = — KT.

(2) The couple is maintained at this magnitude for some time. When the magnitude
of the torsional couple attains this value the cylinder will have a torsional displacement

given approximately by 6 (I,¢) = — %-Z(T — 7,). - When the couple is kept at this

constant magnitude, since the torsional displacement has not the appropriate value
for an equilibrium position torsional vibrations will be set up in the cylinder. These
will die down until the torsional displacement is given by 6 (J,¢) = — %—l T.

(8) The cylinder is now twisted by a couple of magnitude L = K (¢ — T) for a time
2T, when the magnitude of the couple becomes L. = KT, the value of the couple at

the start of the cycle of changes. The torsional displacement is now given approxi-
mately by 0 (l,¢) = Ki

< (
0(l,t) = I%'E of the cylinder under a couple L = KT. Thus torsional vibrations are
set up, and they die down until the torsional displacement finally assumes its initial
value, given by 0 (1,?) = ECE This completes the cycle of changes.
In fig. 4 the torsional couple is plotted against the torsional displacement 6 (I, ¢)
during this cycle of changes. The dotted line is the graph of the torsional couple plotted
against the corresponding equilibrium torsional displacement of the end z=1. The

hysteresis loop has been drawn on the assumption that the length of the cylinder is

T — =,), which differs from the equilibrium displacement

less than Z%E If it is greater than T—ﬁ-zf , then the ends of the loop will be of more

complicated shape (cf., for instance the graph, fig. 3).

Kl<,
C

of the loop is proportional to K, which is the rate of change of the couple L with the

The horizontal width of the loop is approximately equal to 2 . Thus the thickness

3H2
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time. The hysteresis loop is thus thickest for the fastest cycles of changes. When the
cycle of changes is made infinitely slowly, the thickness of the loop is infinitesimally
small. For indefinitely fast cycles of changes the thickness of the loop is indefinitely
great. We remember, however, that the theory of visco-elasticity only gives an accurate

Torsifonal
couplle [L]

Torsional
displacement

0 (5]

Fie. 4.—Hysteresis Loop.

representation of the behaviour of the solid if the rate of straining is less than the
“ upper visco-elastic limit ” ; and if the effects of plasticity are not absent, only if the
rate of straining is greater than the ““ lower visco-elastic limit > (see §1.6). An experi-
mental investigation of the hysteresis loop appears to be a ready method of determining
the visco-elastic limits. ’

Summary.

The object of the paper is to investigate the behaviour of ““ visco-elastic ” solids,
the relation between the stress and strain in their interior, and the character of their
vibrations under given surface conditions. ‘

An account is given of work on imperfectness of elasticity since 1834. The results of
previous investigations are examined with a view to the formulation of a general theory
of the behaviour of imperfectly elastic solids.

By the complete application of the principle of virtual work to a strained and straining
imperfectly elastic solid, a general theory of imperfect elasticity—of the type called
visco-elasticity—is developed. The modification of the stress-strain relations in a
visco-elastic solid due to thermo-elastic causes is worked out.

Some general theorems are proved concerning the vibrations of visco-elastic
solids. It is shown that any solution of the equations of motion, subject to given
initial conditions of displacement and velocity and subject to the surface conditions
which hold for forced or free vibrations, is a unique solution. A critical number for a
visco-elastic solid is defined. It is shown that, if the critical number is greater than one,
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then the solid can not execute an oscillatory motion when there is no surface traction.
‘When the critical number of the solid is less than one it is shown that the motion of the
solid in its free vibration is the superposition of damped harmonic oscillations and
aperiodic motions. For solids of simple shape, it is shown that there is a critical size
such that solids of smaller size cannot execute oscillatory motion when free from surface
traction.

The general theorems are illustrated by some examples on the torsional and
longitudinal vibrations of thin isotropic cylinders. Two problems of forced torsional
motion are analysed, and the results compared with those for perfectly elastic cylinders.
The hysteresis loop for a closed cycle of changes is constructed from these results.
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